Math 2270 - Assignment 4

Dylan Zwick

Fall 2012

Section 2.5-1, 7, 25, 27, 29
Section 2.6 -3, 5, 7, 13, 16
Section 2.7-1, 12, 19, 22, 40

2.5 - Inverse Matrices

2.5.1 Find the inverses (directly or from the 2 by 2 formula) of A, B, C :

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
2 & 0 \\
4 & 2
\end{array}\right) \quad C=\left(\begin{array}{ll}
3 & 4 \\
5 & 7
\end{array}\right) \\
& A^{-1}=\frac{1}{-12}\left(\begin{array}{cc}
0 & -3 \\
-4 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \frac{3}{12} \\
\frac{4}{12} & 0
\end{array}\right) \\
& B^{-1}=\frac{1}{4}\left(\begin{array}{cc}
2 & 0 \\
-4 & 2
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
-1 & \frac{1}{2}
\end{array}\right) \\
& C^{-1}=\left(\begin{array}{cc}
7 & -4 \\
-5 & 3
\end{array}\right)
\end{aligned}
$$

2.5.7 (Important) If A has row $1+$ row 2 now 3 , show that A is not invertible:
(a) Explain why $A \mathbf{x}=(1,0,0)$ cannot have a solution.
(b) Which right sides $\left(b_{1}, b_{2}, b_{3}\right)$ might allow a solution to $A \mathbf{x}=\mathbf{b}$?
(c) What happens to row 3 in elimination?
a)

$$
\left.A \vec{x}=\left(\begin{array}{l}
(\operatorname{row} \\
\operatorname{row} \\
(\operatorname{of} A)-\vec{x} \\
(\operatorname{row} \\
\operatorname{row}
\end{array} \operatorname{rof} A\right)-\vec{x} A\right)-\vec{x}, ~(1) ~\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

If $(\operatorname{row} 3$ of $A)=(\operatorname{row} 1$ of $A \mid+(\operatorname{row} 2$ of $A)$
then $\Rightarrow(\operatorname{row} 3$ of $A)-\vec{x}=(\operatorname{row} \mid$ of $A)-\vec{x}+(\operatorname{row} 2$ of $A)-\vec{x}$

$$
=(\operatorname{row} \operatorname{lof} A)-\vec{x} \text { as }(\operatorname{row} 2 \circ f A) \cdot \vec{x}=0
$$

So, we'd have to have
(row 1 of $A) \cdot \vec{x}=1$ and
$(\operatorname{row} \operatorname{lof} A)-\vec{x}=0$
which i impossible.
b) If $b_{3}=b_{1}+b_{2}$ then there could be a solution
c) It becomes a row of O_{5}.
2.5.25 Find A^{-1} and B^{-1} (if they exist) by elimination of [$A \quad I$] and $\left[\begin{array}{ll}B & I\end{array}\right]$:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) . \\
& \left(\begin{array}{llllll}
2 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{cccccc}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2} & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{cccccc}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & \frac{3}{2} & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{cccccc}
2 & 1 & 0 & 1 & 0 & -1 \\
0 & \frac{3}{2} & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \begin{array}{l}
\Rightarrow\left(\begin{array}{cccccc}
2 & 0 & 0 & \frac{4}{3} & -\frac{2}{3} & -\frac{2}{3} \\
0 & \frac{3}{2} & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
A^{-1}=\left(\begin{array}{cccc}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{ccccc}
2 & -1 & -1 & 1 & 0
\end{array} 0\right. \\
-1 & 2 & -1 \\
-1 & 0 & 1 \\
-1 & 2 & 0
\end{array}\right)
\end{array} \\
& \Rightarrow\left(\begin{array}{cccccc}
2 & -1 & -1 & 1 & 0 & 0 \\
0 & \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right) \quad \text { Fail } \quad \begin{array}{l}
\text { B B not } \\
\text { invertible. }
\end{array} .
\end{aligned}
$$

2.5.27 Invert these matrices A by the Gauss-Jordan method starting with [$\left.\begin{array}{ll}A & I\end{array}\right]$:

$$
\left.\begin{array}{l}
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
2 & 1 & 3 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Rightarrow\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 3 & -2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
0
\end{array} 0 \begin{array}{lllll}
1 & 1 & 0 & 1 & -2 \\
1 & 2 & 2
\end{array}\right)
$$

2.5.29 True or false (with a counterexample if false and a reason if true):
(a) A 4 by 4 matrix with a row of zeros is not invertible.
(b) Every matrix with 1 's down the main diagonal is invertible.
(c) If A in invertible then A^{-1} and A^{2} are invertible.
a) True. Elimination must fail with a row of O.
b) False. $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
is not invertible.
c) True.
The inverse
of A^{-1} is

The inverse
of $A^{2} 13$

$$
\left(A^{-1}\right)\left(A^{-1}\right)=A^{-2} .
$$

2.6-Elimination = Factorization: $A=L U$

2.6.3 Forward elimination changes $A \mathbf{x}=\mathbf{b}$ to a triangular $U \mathbf{x}=\mathbf{c}$:

$$
\begin{aligned}
x+y+z & =5 \\
x+2 y+3 z & =7 \\
x+3 y+6 z & =11 \\
x+y+z & =5 \\
y+2 z & =2 \\
X+5 z= & 6 \\
X+2 y+z & =5 \\
x+y+2 z & =2 \\
x+ & =2
\end{aligned}
$$

The equation $z=2$ in $U \mathbf{x}=\mathbf{c}$ comes from the original $x+3 y+6 z=11$ in $A \mathbf{x}=\mathbf{b}$ by subtracting $\ell_{31}=\quad \mid \quad$ times equation 1 and $\ell_{32}=\frac{2}{}$ times the final equation 2. Reverse that to recover $\left[\begin{array}{llll}1 & 3 & 6 & 11\end{array}\right]$ in the last row of A and \mathbf{b} from the final $\left[\begin{array}{llll}1 & 1 & 1 & 5\end{array}\right]$ and $\left[\begin{array}{llll}0 & 1 & 2 & 2\end{array}\right]$ and $\left[\begin{array}{llll}0 & 0 & 1 & 2\end{array}\right]$ in U and c:

Row 3 of $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]=\left(\ell_{31}\right.$ Row $1+\ell_{32}$ Row $2+1$ Row 3$)$ of $\left[\begin{array}{ll}U & c\end{array}\right]$.

In matrix notation this is multiplication by L. So $A=L U$ and $\mathbf{b}=L \mathbf{c}$.
2.6.5 What matrix E puts A into triangular form $E A=U$? Multiply by $E^{-1}=L$ to factor A into $L U$:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
6 & 3 & 5
\end{array}\right) \\
& E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
0 & 3 & 5
\end{array}\right) \\
& \\
& =\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right)=U \\
& E^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right)=L \\
& A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right)
\end{aligned}
$$

2.6.7 What three elimination matrices E_{21}, E_{31}, E_{32} put A into its upper triangular form $E_{32} E_{31} E_{21} A=U$? Multiply by E_{32}^{-1}, E_{31}^{-1} and E_{21}^{-1} to factor A into L times U :

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 2 \\
3 & 4 & 5
\end{array}\right) \quad L=E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} . \\
& E_{21}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 2 \\
3 & 4 & 5
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
3 & 4 & 5
\end{array}\right) \\
& E_{31}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
3 & 4 & 5
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 4 & 2
\end{array}\right) \\
& E_{32}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 4 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \\
& 11 \\
& E_{21}^{-1} E_{31}^{-1} E_{22}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right)=L \\
& \left(\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)=8\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 2 \\
3 & 4 & 5
\end{array}\right)\right.
\end{aligned}
$$

2.6.13 (Recommended) Compute L and U for the symmetric matrix A :

$$
A=\left(\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right)
$$

Find four conditions on a, b, c, d to get $A=L U$ with four pivots.

Must have $a \neq 0, b \neq a, c \neq b, \quad d \neq c$
2.6.16 Solve $L \mathbf{c}=\mathbf{b}$ to find \mathbf{c}. Then solve $U \mathbf{x}=\mathbf{c}$ to find \mathbf{x}. What was A ?

2.7 -Transposes and Permutations
2.7.1 Find A^{T} and A^{-1} and $\left(A^{-1}\right)^{T}$ and $\left(A^{T}\right)^{-1}$ for

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
9 & 3
\end{array}\right) \quad \text { and also } \quad A=\left(\begin{array}{ll}
1 & c \\
c & 0
\end{array}\right) . \\
& A=\left(\begin{array}{ll}
1 & 0 \\
9 & 3
\end{array}\right) \quad A^{\top}=\left(\begin{array}{ll}
1 & 9 \\
0 & 3
\end{array}\right) \\
& A^{-1}=\frac{1}{3}\left(\begin{array}{cc}
3 & 0 \\
-9 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{3} & 0 \\
-3 & \frac{1}{3}
\end{array}\right) \\
& \left(A^{-1}\right)^{\top}=\left(\begin{array}{ll}
1 & -3 \\
0 & \frac{1}{3}
\end{array}\right) \quad\left(A^{\top}\right)^{-1}=\left(\begin{array}{ll}
1 & -3 \\
0 & \frac{1}{3}
\end{array}\right) \\
& A=\left(\begin{array}{ll}
1 & c \\
c & 0
\end{array}\right) \quad A^{\top}=\left(\begin{array}{cc}
1 & c \\
c & 0
\end{array}\right) \\
& A^{-1}=\frac{1}{0-c^{2}}\left(\begin{array}{cc}
0 & -c \\
-c & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & \frac{1}{c} \\
\frac{1}{c} & -\frac{1}{c^{2}}
\end{array}\right) \\
& \left(A^{-1}\right)^{\top}=\left(\begin{array}{cc}
0 & \frac{1}{c} \\
\frac{1}{c} & -\frac{1}{c^{2}}
\end{array}\right) \quad\left(A^{\top}\right)^{-1}=\left(\begin{array}{c}
0 \\
\frac{1}{c} \\
c
\end{array}\right)
\end{aligned}
$$

2.7.12 Explain why the dot product of \mathbf{x} and \mathbf{y} equals the dot product of $P \mathbf{x}$ and $P \mathbf{y}$. Then from $(P \mathbf{x})^{T}(P \mathbf{y})=\mathbf{x}^{T} \mathbf{y}$ deduce that $P^{T} P=I$ for any permutation. With $\mathbf{x}=(1,2,3)$ and $\mathbf{y}=(1,4,2)$ choose P to show that $P \mathbf{x} \cdot \mathbf{y}$ is not always $\mathbf{x} \cdot P \mathbf{y}$.

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

permuting the order doesn't change the sum.

$$
\begin{gathered}
(P \vec{x})^{\top}(P \vec{y})=\vec{x}^{\top} p^{\top} P \vec{y}=\vec{x}^{\top} \vec{y} \\
S_{0}, \quad p^{\top} P=I . \\
\vec{x} \cdot \vec{y}=1+8+6=15 \\
P=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad P \vec{x}=(3,2,1) \quad P \vec{y}=(2,4,1) \\
\vec{x} \cdot P \vec{y}=(1,2,3) \cdot(2,4,1)=13 \\
\left.\left.P=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \right\rvert\, \begin{array}{c}
p \vec{x}
\end{array}\right)(2,3,1) \quad P \vec{y}=(4,2,1) \\
P \vec{x} \cdot \vec{y}=2+12+2=16 \\
\vec{x} \cdot P \vec{y}=4+4+3=42
\end{gathered}
$$

2.7.19 Suppose R is rectangular (m by n) and A is symmetric (m by m).
(a) Transpose $R^{T} A R$ to show its symmetry. What shape is this matrix?
(b) Show why $R^{T} R$ has no negative numbers on its diagonal.
a) $\left(R^{\top} A R\right)^{\top}=R^{\top} A^{\top}\left(R^{\top}\right)^{\top}=R^{\top} A^{\top} R$
$=R^{\top} A R$ as A is symmetric.
$(n \times m) \times(m \times m) \times(m \times n)$ gives an $n \times n$ matrix
b) $K^{\top} R=A$. The diagonal term $a_{i i}$ is
$a_{i i}=\left(\right.$ Row i of $\left.R^{+}\right) \cdot($ (column i of $R)$ $=($ (column i of $R) \cdot($ column i of $R)$ ≥ 0
as $\vec{v}, \vec{v} \geq 0$ for any vector \vec{v} -
2.7.22 Find the $P A=L U$ factorization (and check them) for

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
2 & 3 & 4
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 1
\end{array}\right) . \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
2 & 3 & 4
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
2 & 3 & 4
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 3 & 2
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 8 & 21
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right) \\
& E^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 3 & 1
\end{array}\right)=L \\
& \left.\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
2 & 3 & 4
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)\right] \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 1 \\
2 & 4 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 1 \\
2 & 4 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
2 & 4 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
2 & 4 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad 14 \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

2.7.40 Suppose Q^{T} equals Q^{-1} (transpose equals inverse, so $Q^{T} Q=I$):
(a) Show that the columns q_{1}, \ldots, q_{n} are unit vectors: $\left\|\mathbf{q}_{i}\right\|^{2}=1$.
(b) Show that every two columns of Q are perpendicular: $\mathbf{q}_{1}^{T} \mathbf{q}_{2}=0$.
(c) Find a 2 by 2 example with first entry $q_{11}=\cos \theta$.

$$
\begin{aligned}
& \text { a) The entry }\left(Q^{\top} Q\right)_{i j}=\text { (row i of } \overline{\text { D }} \cdot(\text { (colame } j o+Q) \\
& \left.\left.=\left(\frac{\text { fowl }}{\text { column }} \text { i of } Q\right)^{-(c o l u m n ~}\right) \text { of } Q\right) \\
& =\vec{q} \cdot \overrightarrow{q_{j}}=\delta_{i j} . \\
& \text { For } i=j \text { we get } \vec{q}_{i} \cdot \vec{f}_{i}=1 \\
& \text { So, } \quad\left\|\overrightarrow{q_{i}}\right\|=1 \text {. } \\
& \text { b) } \\
& \vec{q}_{i}, \vec{q}_{j}=\left(Q^{+} Q\right)_{i j}=0 \text { if } i \neq j \\
& \text { c) }\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
\end{aligned}
$$

