Math 2270 - Assignment 4

Dylan Zwick

Fall 2012

Section 2.5 - 1, 7, 25, 27, 29 **Section 2.6** - 3, 5, 7, 13, 16 **Section 2.7** - 1, 12, 19, 22, 40

2.5 - Inverse Matrices

2.5.1 Find the inverses (directly or from the 2 by 2 formula) of A, B, C :

$$
A = \begin{pmatrix} 0 & 3 \\ 4 & 0 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix} \qquad \qquad C = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}
$$

- **2.5.7** (Important) If A has row $1 + row 2 = row 3$, show that A is not invertible:
	- **(a)** Explain why $A\mathbf{x} = (1, 0, 0)$ cannot have a solution.
	- **(b)** Which right sides (b_1, b_2, b_3) might allow a solution to $A\mathbf{x} = \mathbf{b}$?
	- **(c)** What happens to row 3 in elimination?

2.5.25 Find A^{-1} and B^{-1} (*if they exist*) by elimination of $\begin{bmatrix} A & I \end{bmatrix}$ and $\left[\begin{array}{cc} B & I \end{array} \right]$:

$$
A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.
$$

2.5.27 Invert these matrices A by the Gauss-Jordan method starting with $[A \mid I]$:

$$
A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}
$$

2.5.29 True or false (with a counterexample if false and a reason if true):

- **(a)** A 4 by 4 matrix with a row of zeros is not invertible.
- **(b)** Every matrix with 1's down the main diagonal is invertible.
- **(c)** If *A* in invertible then A^{-1} and A^2 are invertible.

2.6 - Elimination = Factorization: A = LU

2.6.3 Forward elimination changes A **x** = **b** to a triangular U **x** = **c**:

$$
x + y + z = 5
$$

\n
$$
x + 2y + 3z = 7
$$

\n
$$
x + 3y + 6z = 11
$$

\n
$$
x + y + z = 5
$$

\n
$$
y + 2z = 2
$$

\n
$$
2y + 5z = 6
$$

\n
$$
x + y + z = 5
$$

\n
$$
y + 2z = 2
$$

\n
$$
z = 2
$$

The equation $z = 2$ in U **x** = **c** comes from the original $x+3y+6z = 11$ in A**x** = **b** by subtracting ℓ³¹ = times equation 1 and $\ell_{32} =$ times the *final* equation 2. Reverse that to recover [1 3 6 11] in the last row of A and **b** from the final [1 1 1 5] and [0 1 2 2] and [0 0 1 2] in U and **c**:

Row 3 of
$$
\begin{bmatrix} A & \mathbf{b} \end{bmatrix} = (\ell_{31} \text{ Row } 1 + \ell_{32} \text{ Row } 2 + 1 \text{ Row } 3)
$$
 of $\begin{bmatrix} U & \mathbf{c} \end{bmatrix}$.

In matrix notation this is multiplication by L. So $A = LU$ and $\mathbf{b} =$ L **c**.¹

¹This problem is a bit verbose. The only thing you're being asked to do is fill in the blanks.

2.6.5 What matrix E puts A into triangular form $EA = U$? Multiply by $E^{-1} = L$ to factor A into LU :

$$
A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 5 \end{array}\right)
$$

2.6.7 What three elimination matrices E_{21}, E_{31}, E_{32} put A into its upper triangular form $E_{32}E_{31}E_{21}A = U$? Multiply by E_{32}^{-1} , E_{31}^{-1} and E_{21}^{-1} to factor A into L times U :

$$
A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{pmatrix} \qquad L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}.
$$

2.6.13 (*Recommended*) Compute L and U for the symmetric matrix A:

$$
A = \begin{pmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{pmatrix}.
$$

Find four conditions on a, b, c, d to get $A = LU$ with four pivots.

2.6.16 Solve $L\mathbf{c} = \mathbf{b}$ to find **c**. Then solve $U\mathbf{x} = \mathbf{c}$ to find **x**. *What was* A?

$$
L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}.
$$

2.7 - Transposes and Permutations

2.7.1 Find A^T and A^{-1} and $(A^{-1})^T$ and $(A^T)^{-1}$ for

$$
A = \begin{pmatrix} 1 & 0 \\ 9 & 3 \end{pmatrix} \quad \text{and also} \quad A = \begin{pmatrix} 1 & c \\ c & 0 \end{pmatrix}.
$$

2.7.12 Explain why the dot product of **x** and **y** equals the dot product of P**x** and P**y**. Then from $(Px)^T(Py) = x^T y$ deduce that $P^T P = I$ for any permutation. With $\mathbf{x} = (1, 2, 3)$ and $\mathbf{y} = (1, 4, 2)$ choose P to show that P **x** · **y** is not always $\mathbf{x} \cdot P$ **y**.

2.7.19 Suppose R is rectangular $(m \text{ by } n)$ and A is symmetric $(m \text{ by } m)$.

- (a) Transpose R^TAR to show its symmetry. What shape is this matrix?
- **(b)** Show why $R^T R$ has no negative numbers on its diagonal.

2.7.22 Find the $PA = LU$ factorization (and check them) for

$$
A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 4 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{pmatrix}.
$$

2.7.40 Suppose Q^T equals Q^{-1} (transpose equals inverse, so $Q^TQ = I$):

- (a) Show that the columns q_1, \ldots, q_n are unit vectors: $||\mathbf{q}_i||^2 = 1$.
- **(b)** Show that every two columns of Q are perpendicular: $\mathbf{q}_1^T \mathbf{q}_2 = 0$.
- **(c)** Find a 2 by 2 example with first entry $q_{11} = \cos \theta$.