Math 2270 - Assignment 4

Dylan Zwick

Fall 2012

Section 2.5 - 1, 7, 25, 27, 29 **Section 2.6** - 3, 5, 7, 13, 16 **Section 2.7** - 1, 12, 19, 22, 40

2.5 - Inverse Matrices

2.5.1 Find the inverses (directly or from the 2 by 2 formula) of A, B, C:

$$A = \begin{pmatrix} 0 & 3 \\ 4 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$$

- **2.5.7** (Important) If *A* has row 1 + row 2 = row 3, show that *A* is not invertible:
 - (a) Explain why $A\mathbf{x} = (1, 0, 0)$ cannot have a solution.
 - (b) Which right sides (b_1, b_2, b_3) might allow a solution to $A\mathbf{x} = \mathbf{b}$?
 - (c) What happens to row 3 in elimination?

2.5.25 Find A^{-1} and B^{-1} (*if they exist*) by elimination of $\begin{bmatrix} A & I \end{bmatrix}$ and $\begin{bmatrix} B & I \end{bmatrix}$:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

2.5.27 Invert these matrices *A* by the Gauss-Jordan method starting with $\begin{bmatrix} A & I \end{bmatrix}$:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

2.5.29 True or false (with a counterexample if false and a reason if true):

- (a) A 4 by 4 matrix with a row of zeros is not invertible.
- (b) Every matrix with 1's down the main diagonal is invertible.
- (c) If A in invertible then A^{-1} and A^2 are invertible.

2.6 - Elimination = Factorization: A = LU

2.6.3 Forward elimination changes $A\mathbf{x} = \mathbf{b}$ to a triangular $U\mathbf{x} = \mathbf{c}$:

The equation z = 2 in $U\mathbf{x} = \mathbf{c}$ comes from the original x + 3y + 6z = 11in $A\mathbf{x} = \mathbf{b}$ by subtracting $\ell_{31} = \underline{\qquad}$ times equation 1 and $\ell_{32} = \underline{\qquad}$ times the *final* equation 2. Reverse that to recover $\begin{bmatrix} 1 & 3 & 6 & 11 \end{bmatrix}$ in the last row of A and \mathbf{b} from the final $\begin{bmatrix} 1 & 1 & 1 & 5 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 & 2 & 2 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 & 1 & 2 \end{bmatrix}$ in U and \mathbf{c} :

Row 3 of
$$[A \ \mathbf{b}] = (\ell_{31} \text{ Row } 1 + \ell_{32} \text{ Row } 2 + 1 \text{ Row } 3)$$
 of $[U \ \mathbf{c}]$.

In matrix notation this is multiplication by *L*. So A = LU and $\mathbf{b} = L\mathbf{c}^{1}$.

¹This problem is a bit verbose. The only thing you're being asked to do is fill in the blanks.

2.6.5 What matrix *E* puts *A* into triangular form EA = U? Multiply by $E^{-1} = L$ to factor *A* into *LU*:

$$A = \left(\begin{array}{rrr} 2 & 1 & 0\\ 0 & 4 & 2\\ 6 & 3 & 5 \end{array}\right)$$

2.6.7 What three elimination matrices E_{21}, E_{31}, E_{32} put A into its upper triangular form $E_{32}E_{31}E_{21}A = U$? Multiply by E_{32}^{-1}, E_{31}^{-1} and E_{21}^{-1} to factor A into L times U:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{pmatrix} \qquad \qquad L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}.$$

2.6.13 (*Recommended*) Compute *L* and *U* for the symmetric matrix *A*:

$$A = \left(\begin{array}{rrrr} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{array} \right).$$

Find four conditions on a, b, c, d to get A = LU with four pivots.

2.6.16 Solve $L\mathbf{c} = \mathbf{b}$ to find \mathbf{c} . Then solve $U\mathbf{x} = \mathbf{c}$ to find \mathbf{x} . What was A?

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}.$$

2.7 - Transposes and Permutations

2.7.1 Find A^T and A^{-1} and $(A^{-1})^T$ and $(A^T)^{-1}$ for

$$A = \begin{pmatrix} 1 & 0 \\ 9 & 3 \end{pmatrix} \quad \text{and also} \quad A = \begin{pmatrix} 1 & c \\ c & 0 \end{pmatrix}.$$

2.7.12 Explain why the dot product of **x** and **y** equals the dot product of $P\mathbf{x}$ and $P\mathbf{y}$. Then from $(P\mathbf{x})^T(P\mathbf{y}) = \mathbf{x}^T\mathbf{y}$ deduce that $P^TP = I$ for any permutation. With $\mathbf{x} = (1, 2, 3)$ and $\mathbf{y} = (1, 4, 2)$ choose P to show that $P\mathbf{x} \cdot \mathbf{y}$ is not always $\mathbf{x} \cdot P\mathbf{y}$.

2.7.19 Suppose R is rectangular (m by n) and A is symmetric (m by m).

- (a) Transpose $R^T A R$ to show its symmetry. What shape is this matrix?
- (b) Show why $R^T R$ has no negative numbers on its diagonal.

2.7.22 Find the PA = LU factorization (and check them) for

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 4 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

2.7.40 Suppose Q^T equals Q^{-1} (transpose equals inverse, so $Q^T Q = I$):

- (a) Show that the columns q_1, \ldots, q_n are unit vectors: $||\mathbf{q}_i||^2 = 1$.
- (b) Show that every two columns of Q are perpendicular: $\mathbf{q}_1^T \mathbf{q}_2 = 0$.
- (c) Find a 2 by 2 example with first entry $q_{11} = \cos \theta$.