Math 2270 - Assignment 3

Dylan Zwick

Fall 2012

Section 2.3 - 1,2,3,7,17
Section $2.4-1,2,13,14,32$

1 Section 2.3 -Elimination Using Matrices

2.3.1 Write down the 3 by 3 matrices that produce these elimination steps:
(a) E_{21} subtracts 5 times row 1 from row 2.
(b) E_{32} subtracts -7 times row 2 from row 3 .
(c) P exchanges rows 1 and 2 , then rows 2 and 3 .

$$
\begin{aligned}
&\text { a) } \left.\begin{array}{rl}
E_{21} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
E_{32} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 7 & 1
\end{array}\right) \\
P & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
&(12)(23)=(132)
\end{aligned}
$$

2.3.2 In Problem 1, applying E_{21} and then E_{32} to $\mathbf{b}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ gives

$$
E_{32} E_{21} \mathbf{b}=\left(\begin{array}{c}1 \\ -5 \\ 35\end{array}\right) .
$$

When E_{32} comes first, row _ 3 feels no effect from row
\qquad
2.3.3 Which three matrices E_{21}, E_{31}, E_{32} put A into triangular form U ?

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
4 & 6 & 1 \\
-2 & 2 & 0
\end{array}\right)_{E_{32} E_{31} E_{21} A=U} \quad \text { and }
$$

$$
E_{21}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad E_{32}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)
$$

$$
E_{31}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

$$
E_{32} E_{31} E_{21}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
10 & -2 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
10 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
4 & 6 & 1 \\
-2 & 2 & 0
\end{array}\right)=\frac{\left(\begin{array}{rrr}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & -2
\end{array}\right)=0}{3}
$$

2.3.7 Suppose E subtracts 7 times row 1 from row 3 .
(a) To invert that step you should \qquad add 7 times row \qquad to row \qquad .
(b) What "inverse matrix" E^{-1} takes the reverse step (so $E^{-1} E=I$)?
(c) If the reverse step is applied first (and then E) show that $E E^{-1}=$ I.

$$
\begin{aligned}
& \text { b) } E=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-7 & 0 & 1
\end{array}\right)\left[E^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
7 & 0 & 1
\end{array}\right)\right. \\
& \text { c) } E E^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-7 & 1 & 0 \\
-7 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
7 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

2.3.17 The parabola $y=a+b x+c x^{2}$ goes through the points $(x, y)=$ $(1,4)$ and $(2,8)$ and (3,14). Find and solve a matrix equation for the unknowns (a, b, c).

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
4 \\
8 \\
14
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right)\left(\begin{array}{l}
d \\
b \\
c
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
8 \\
14
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
1 & 3 & 9
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
4 \\
4 \\
14
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right) \operatorname{AP}\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
1 & 3 & 9
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
4 \\
14
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 2 & 8
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
4 \\
4 \\
10
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 2 & 8
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)\left(\begin{array}{c}
4 \\
4 \\
10
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
4 \\
4 \\
2
\end{array}\right) \Rightarrow \begin{array}{l}
5 \\
y=1, b=1, a=2 \\
y=x^{2}+x+2
\end{array}
\end{aligned}
$$

2 Section 2.4-Rules for Matrix Operations
2.4.1 A is a 3 by $5, B$ is a 5 by $3, C$ is a 5 by 1 . All entries are 13 . Which of these matrix operations are allowed, and what are the results

$$
\begin{aligned}
& B A \quad A B \quad A B D \quad D B A \quad A(B+C) \text {. } \\
& A B=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
5 & 5 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5
\end{array}\right) \\
& B A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lllll}
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3
\end{array}\right) \\
& A B D=\left(\begin{array}{lll}
5 & 5 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
15 \\
15 \\
15
\end{array}\right)
\end{aligned}
$$

DBA is not allowed.
$A(B+C)$ is not allowed. (Wed be adding a 3×3 to a 3×1-)
2.4.2 What rows or columns or matrices do you multiply to find
(a) the third column of $A B$?
(b) the first row of $A B$?
(c) the entry in row 3 , column 4 of $A B$?
(d) the entry in row 1 , column 1 of $C D E$?
a) The matrix A by the third column of B.
b) The first row of A by the matrix B.
c) The third row of A by the fourth column of B.
d) The product of the first row of C with the matrix D and the first column of E.
2.4.13 Which of the following matrices are guaranteed to equal $(A-B)^{2}$:

$$
\begin{gathered}
A^{2}-B^{2}, \\
(B-A)^{2}, \\
A^{2}-2 A B+B^{2} \\
A(A-B)-B(A-B), \\
A^{2}-A B-B A+B^{2} ?
\end{gathered}
$$

Circled entries are guaranteed to be equal.
2.4.14 True or false:
(a) If A^{2} is defined then A is necessarily square.
(b) if $A B$ and $B A$ are defined then A and B are square.
(c) If $A B$ and $B A$ are defined then $A B$ and $B A$ are square.
(d) If $A B=B$ then $A=I$.
a) True.
b) False. If $A B$ and $B A$ are defined then if A is $m \times n$ then B is $n \times m$. could be that $m=n$, but not necessarily
c) True.
d) Fake. For example, if

$$
A=B=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) .
$$

2.4.32 (Very important) Suppose you solve $A \mathbf{x}=\mathbf{b}$ for three special right sides \mathbf{b} :

$$
A \mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { and } A \mathbf{x}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { and } A \mathbf{x}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

If the three solutions $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are the columns of a matrix X, what is A times X ?
$A X=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

