Math 2270 - Assignment 3

Dylan Zwick
Fall 2012

Section 2.3 - 1, 2,3,7,17
Section 2.4 -1,2,13,14,32

1 Section 2.3-Elimination Using Matrices

2.3.1 Write down the 3 by 3 matrices that produce these elimination steps:
(a) E_{21} subtracts 5 times row 1 from row 2 .
(b) E_{32} subtracts -7 times row 2 from row 3 .
(c) P exchanges rows 1 and 2 , then rows 2 and 3 .
2.3.2 In Problem 1, applying E_{21} and then E_{32} to $\mathbf{b}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ gives

$$
E_{32} E_{21} \mathbf{b}=
$$

\qquad

Applying E_{32} before E_{21} gives

$$
E_{21} E_{32} \mathbf{b}=
$$

\qquad

When E_{32} comes first, row \qquad feels no effect from row -.
2.3.3 Which three matrices E_{21}, E_{31}, E_{32} put A into triangular form U ?

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
4 & 6 & 1 \\
-2 & 2 & 0
\end{array}\right) \quad \text { and } \quad E_{32} E_{31} E_{21} A=U
$$

2.3.7 Suppose E subtracts 7 times row 1 from row 3 .
(a) To invert that step you should \qquad 7 times row \qquad to row \qquad .
(b) What "inverse matrix" E^{-1} takes the reverse step (so $E^{-1} E=I$)?
(c) If the reverse step is applied first (and then E) show that $E E^{-1}=$ I.
2.3.17 The parabola $y=a+b x+c x^{2}$ goes through the points $(x, y)=$ $(1,4)$ and $(2,8)$ and $(3,14)$. Find and solve a matrix equation for the unknowns (a, b, c).

2 Section 2.4-Rules for Matrix Operations

2.4.1 A is a 3 by $5, B$ is a 5 by $3, C$ is a 5 by 1 , and D is 3 by 1 . All entries are 1. Which of these matrix operations are allowed, and what are the results

$$
B A \quad A B \quad A B D \quad D B A \quad A(B+C) \text {. }
$$

2.4.2 What rows or columns or matrices do you multiply to find
(a) the third column of $A B$?
(b) the first row of $A B$?
(c) the entry in row 3 , column 4 of $A B$?
(d) the entry in row 1 , column 1 of $C D E$?
2.4.13 Which of the following matrices are guaranteed to equal $(A-B)^{2}$:

$$
\begin{gathered}
A^{2}-B^{2}, \\
(B-A)^{2}, \\
A^{2}-2 A B+B^{2}, \\
A(A-B)-B(A-B), \\
A^{2}-A B-B A+B^{2} ?
\end{gathered}
$$

2.4.14 True or false:
(a) If A^{2} is defined then A is necessarily square.
(b) if $A B$ and $B A$ are defined then A and B are square.
(c) If $A B$ and $B A$ are defined then $A B$ and $B A$ are square.
(d) If $A B=B$ then $A=I$.
2.4.32 (Very important) Suppose you solve $A \mathbf{x}=\mathbf{b}$ for three special right sides \mathbf{b} :

$$
A \mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { and } A \mathbf{x}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { and } A \mathbf{x}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

If the three solutions $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are the columns of a matrix X, what is A times X ?

