Math 2270 - Assignment 2

Dylan Zwick
Fall 2012

Section 2.1 - 4,5,9,13,17
Section 2.2 - 3,6,11,12,19

1 Section 2.1 - Vectors and Linear Equations

2.1.4 Find a point with $z=2$ on the intersection line of the planes $x+y+$ $3 z=6$ and $x-y+z=4$. Find the point with $z=0$. Find a third point halfway between.
2.1.5 The first of these equations plus the second equals the third:

$$
\begin{gathered}
x+y+z=2 \\
x+2 y+z=3 \\
2 x+3 y+2 z=5
\end{gathered}
$$

The first two planes meet along a line. The third plane contains that line, because if x, y, z satisfy the first two equations then they also \ldots. The equations have infinitely many solutions (the whole line L). Find three solutions on \mathbf{L}.
2.1.9 Compute each $A \mathbf{x}$ by dot products of the rows with the column vector:
(a) $\left(\begin{array}{ccc}1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2\end{array}\right)\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$.
(b) $\left(\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right)$.
2.1.13 (a) A matrix with m rows and n columns multiplies a vector with components. components to produce a vector with \qquad
(b) The planes from the m equations $A \mathbf{x}=\mathbf{b}$ are in \qquad $-$ dimensional space. The combination of the columns of A is in —_--dimensional space.
2.1.17 Find the matrix P that multiplies $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ to give $\left(\begin{array}{c}y \\ z \\ x\end{array}\right)$. Find the matrix Q that multiplies $\left(\begin{array}{c}y \\ z \\ x\end{array}\right)$ to bring back $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.

2 Section 2.2 - The Idea of Elimination

2.2.3 What multiple of equations 1 should be subtracted from equation 2 ?

$$
\begin{aligned}
& 2 x-4 y=6 \\
& -x+5 y=0
\end{aligned} .
$$

After this elimination step, solve the triangular system. If the right side changes to $\binom{-6}{0}$, what is the new solution?
2.2.6 Choose a coefficient b that makes this system singular. Then choose a right side g that makes it solvable. Find two solutions in that singular case,

$$
\begin{aligned}
& 2 x+b y=16 \\
& 4 x+8 y=g
\end{aligned} .
$$

2.2.11 (Recommended) A system of linear equations can't have exactly two solutions. Why? ${ }^{1}$
(a) If $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and $\left(\begin{array}{c}X \\ Y \\ Z\end{array}\right)$ are two solutions, what is another solu-
tion?
(b) If 25 planes meet at two points, where else do they meet?

[^0]2.2.12 Reduce this system to upper triangular form by two row operations
\[

$$
\begin{aligned}
2 x+3 y+z & =8 \\
4 x+7 y+5 z & =20 . \\
-2 y+2 z & =0
\end{aligned}
$$
\]

Circle the pivots. Solve by back substitution for z, y, x.
2.2.19 Which number q makes this system singular and which right side t gives it infinitely many solutions? Find the solution that has $z=1$.

$$
\begin{aligned}
x+4 y-2 z & =1 \\
x+7 y-6 z & =6 \\
3 y+q z & =t
\end{aligned} .
$$

[^0]: ${ }^{1}$ You're not begin asked to answer "why" here. Parts (a) and (b) lead you through an explanation as to why.

