Math 2270 - Assignment 14

Dylan Zwick
Fall 2012

Section8.2-1,2,3,4,5
Section8.3-1,2,3,9,10



8.2 - Graphs and Networks

@ Write down the 3 x 3 incidence matrix A for the triangle graph.
The first row has —1 in column 1 and +1 in column 2. What vectors
(z1, 2, T3) are in its nullspace? How do you know that (1,0, 0) is not
in its row space?

The triangle graph looks like:
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8.2.2 - Write down AT for the triangle graph. Find a vector y in its nullspace.
The components of y are current on the edges - how much current is
going around the triangle?
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8.2.3 - Eliminate z; and z, from the third equation to find the echelon
matrix U. What tree corresponds to the two nonzero rows of U?

—T + Ig = b1
- + z3 = bg
—T9 + I3 = b3
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8.2.4 - Choose a vector (by, by, bs) for which Ax = b can be solved, and
another vector b that allows no solution. How are those b’s related
toy = (1,-1,1)?
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8.2.5 - Choose a vector (fi, f2, f3) for which ATy = f can be solved, and
a vector f that allows no solution. How are those f’s related to x =
(1,1,1)? The equation ATy = f is Kirchoff’s currnd law.
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Markov Matrices, Population, and Economics

8.3.1 - Find the eigenvalues of this Markov matrix (their sum is the trace):
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iagonalize the Markov matrix in Problem 1 to A = SAS™! by
finding its other eigenvector:
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8.3.3 - What are the eigenvalues and steady state eigenvectors for these
Markov matrices?
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8.3.9 - Prove that the square of a Markov matrix is also a Markov matrix.
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8310 A = (@ 2

. is a Markov matrix, its eigenvalues are 1 and
dtd - . The steady state eigenvector is x; =
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