Math 2270 - Assignment 14

Dylan Zwick

Fall 2012

Section 8.2 -1, 2, 3, 4, 5
Section 8.3 -1, 2, 3, 9, 10
8.2 - Graphs and Networks
8.2.1 Write down the 3×3 incidence matrix A for the triangle graph. The first row has -1 in column 1 and +1 in column 2 . What vectors $\left(x_{1}, x_{2}, x_{3}\right)$ are in its nullspace? How do you know that $(1,0,0)$ is not in its row space?

The triangle graph looks like:

Incidence
Matrix

The nullspare

$$
\operatorname{span}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
is not in the row space because it's not perpendicular to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
8.2.2 - Write down A^{T} for the triangle graph. Find a vector y in its nullspace. The components of \mathbf{y} are current on the edges - how much current is going around the triangle?

$$
\begin{aligned}
& A^{\top}=\left(\begin{array}{rrr}
-1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right) \\
& \vec{y}=\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right) \text { is in its nullspace. }
\end{aligned}
$$

A current of 1 unit is going around the triangle
8.2.3 - Eliminate x_{1} and x_{2} from the third equation to find the echelon matrix U. What tree corresponds to the two nonzero rows of U ?

8.2.4 - Choose a vector $\left(b_{1}, b_{2}, b_{3}\right)$ for which $A \mathbf{x}=\mathbf{b}$ can be solved, and another vector \mathbf{b} that allows no solution. How are those \mathbf{b} 's related to $\mathbf{y}=(1,-1,1)$?

$$
\begin{aligned}
-x_{1}+x_{3} & =b_{1} \\
-x_{2}+x_{3} & =b_{2}-b_{1} \\
0 & =b_{3}-b_{2}+b_{1} \\
\vec{b}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) & \text { works } \quad \vec{b}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { does not. }
\end{aligned}
$$

\vec{b} is a solution if and only if

$$
\vec{b} \cdot \stackrel{\rightharpoonup}{y}=0
$$

8.2.5 - Choose a vector $\left(f_{1}, f_{2}, f_{3}\right)$ for which $A^{T} \mathbf{y}=\mathbf{f}$ can be solved, and a vector f that allows no solution. How are those f^{\prime} s related to $\mathrm{x}=$ $(1,1,1)$? The equation $A^{T} \mathbf{y}=\mathbf{f}$ is Kirchoff's \qquad current law.

$$
\begin{aligned}
& A^{\top} \vec{y}=\vec{f} \\
& A^{+} \vec{y}=\left(\begin{array}{ccc}
-1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
-y_{1}-y_{2} \\
y_{1}-y_{3} \\
y_{2}+y_{3}
\end{array}\right) \\
& \text { Pick } \vec{y}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) \Rightarrow \vec{f}=\left(\begin{array}{c}
-3 \\
-1 \\
4
\end{array}\right) \\
& \vec{f}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { does not work. }
\end{aligned}
$$

\vec{f} works if and only if $\vec{f} \cdot \vec{x}=0$.

Markov Matrices, Population, and Economics
8.3.1 - Find the eigenvalues of this Markov matrix (their sum is the trace):

$$
A=\left(\begin{array}{ll}
.90 & .15 \\
.10 & .85
\end{array}\right)
$$

$$
\begin{array}{r}
\lambda=1 \text { is an eigenvalue necessarily- } \\
-90+-85-1=.75 \text { must be the } \\
\text { other eigenvalue. }
\end{array}
$$

8.3.2 - Diagonalize the Markov matrix in Problem 1 to $A=S \Lambda S^{-1}$ by finding its other eigenvector:

$$
A=(\quad)\left(\begin{array}{ll}
1 & \\
& .75
\end{array}\right)\left(\begin{array}{l}
\\
\\
\end{array}\right) .
$$

What is the limit of $A^{k}=S \Lambda^{k} S^{-1}$ when $\Lambda^{k}=\left(\begin{array}{cc}1 & 0 \\ 0 & .75^{k}\end{array}\right)$ approaches $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$?

$$
\begin{aligned}
& \lambda=1 \quad\left(\begin{array}{rr}
-10 & -19 \\
10 & -15
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{3}{2} \\
& \lambda=-75\left(\begin{array}{rr}
-15 & -15 \\
-10 & -10
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{1}{-1} \\
& S=\left(\begin{array}{rr}
3 & 1 \\
2 & -1
\end{array}\right) \quad 5^{-1}=-\frac{1}{5}\left(\begin{array}{cc}
-1 & -1 \\
-2 & 3
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
\frac{2}{5} & -\frac{3}{5}
\end{array}\right)
\end{aligned}
$$

$$
A=\left(\begin{array}{rr}
3 & 1 \\
2 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -75
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
\frac{2}{5} & -\frac{3}{5}
\end{array}\right)
$$

$$
\lim _{k \rightarrow \infty} A^{k}=\left(\begin{array}{cc}
3 & 1 \\
2 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
\frac{3}{5} & -\frac{3}{5}
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
2 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
\frac{2}{5} & -\frac{3}{5}
\end{array}\right)=\left(\begin{array}{cc}
\frac{3}{5} & \frac{3}{5} \\
\frac{2}{5} & \frac{2}{5}
\end{array}\right)
$$

8.3.3 - What are the eigenvalues and steady state eigenvectors for these Markov matrices?

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & .2 \\
0 & .8
\end{array}\right) \quad A=\left(\begin{array}{ll}
.2 & 1 \\
.8 & 0
\end{array}\right) \\
& A=\left(\begin{array}{lll}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right) \text {. } \\
& A=\left(\begin{array}{ll}
1 & -2 \\
0 & -8
\end{array}\right) \text { Eigenvalues } 1,8 \\
& \left(\begin{array}{ll}
0 & -2 \\
0 & -.2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad\binom{1}{0} \\
& \text { is steady state } \\
& \text { eigenvector. } \\
& A=\left(\begin{array}{cc}
-2 & 1 \\
.8 & 0
\end{array}\right) \text { Eigenvalues } 1,-.8 \\
& \left(\begin{array}{cc}
-8 & 1 \\
-8 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{\frac{5}{4}}{1} \quad\binom{\frac{5}{9}}{\frac{4}{9}} \begin{array}{l}
\text { is steady } \\
\text { s tate eigenvector. }
\end{array} \\
& \left|\begin{array}{ccc}
\frac{1}{2}-\lambda & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2}-\lambda & \frac{1}{4}
\end{array}\right|=\left(\frac{1}{2}-\lambda\right)^{3}+\frac{1}{64}+\frac{1}{64}-\frac{3}{16}\left(\frac{1}{2}-\lambda\right) \\
& \frac{1}{4} \frac{1}{4} \frac{1}{2}-\lambda \left\lvert\,=\frac{1}{8}-\frac{3}{4} \lambda+\frac{3}{2} \lambda^{2}-\lambda^{3}+\frac{1}{32}-\frac{3}{32}+\frac{3}{16} \lambda\right. \\
& =-\lambda^{3}+\frac{3}{2} \lambda^{2}-\frac{9}{16} \lambda+\frac{1}{16}=(1-\lambda)\left(\lambda^{2}-\frac{1}{2} \lambda+\frac{1}{16}\right) \\
& =(1-\lambda)\left(\lambda-\frac{1}{4}\right)^{2} \\
& \text { Eigenvalues } \\
& \lambda=1, \frac{1}{4}, \frac{1}{4} \quad\left(\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right) \ll \begin{array}{l}
\text { steady state } \\
\text { eigen vector }
\end{array}
\end{aligned}
$$

8.3.9 - Prove that the square of a Markov matrix is also a Markov matrix.

If A B Markov then if the sum of the terms of \vec{u} is 1 then A \vec{u} sums to 1 as well.

$$
A^{2}=A\left(\vec{a}_{1} \vec{a}_{2} \cdots \vec{a}_{n}\right)=\left(\begin{array}{llll}
A \vec{a}_{1} & A \vec{a}_{2} & \cdots A_{a_{n}}
\end{array}\right)
$$

Each $A \vec{a}$, sums to 1, and so A^{2} is Markov.
8.3.10 If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a Markov matrix, its eigenvalues are 1 and $a+d-1$. The steady state eigenvector is $x_{1}=$

