Math 2270 - Assignment 14

Dylan Zwick
Fall 2012

Section 8.2 - 1, 2, 3, 4, 5
Section 8.3 -1, 2, 3, 9, 10
8.2 -Graphs and Networks
8.2.1 - Write down the 3×3 incidence matrix A for the triangle graph. The first row has -1 in column 1 and +1 in column 2 . What vectors $\left(x_{1}, x_{2}, x_{3}\right)$ are in its nullspace? How do you know that $(1,0,0)$ is not in its row space?

The triangle graph looks like:

8.2.2 - Write down A^{T} for the triangle graph. Find a vector \mathbf{y} in its nullspace. The components of \mathbf{y} are current on the edges - how much current is going around the triangle?
8.2.3 - Eliminate x_{1} and x_{2} from the third equation to find the echelon matrix U. What tree corresponds to the two nonzero rows of U ?

$$
\begin{aligned}
& -x_{1}+x_{2}=b_{1} \\
& -x_{1}+x_{3}=b_{2} . \\
& -x_{2}+x_{3}=b_{3}
\end{aligned}
$$

8.2.4 - Choose a vector $\left(b_{1}, b_{2}, b_{3}\right)$ for which $A \mathbf{x}=\mathbf{b}$ can be solved, and another vector \mathbf{b} that allows no solution. How are those \mathbf{b}^{\prime} s related to $\mathbf{y}=(1,-1,1)$?
8.2.5 - Choose a vector $\left(f_{1}, f_{2}, f_{3}\right)$ for which $A^{T} \mathbf{y}=\mathbf{f}$ can be solved, and a vector \mathbf{f} that allows no solution. How are those $\mathbf{f}^{\prime} \mathbf{s}$ related to $\mathbf{x}=$ $(1,1,1)$? The equation $A^{T} \mathbf{y}=\mathbf{f}$ is Kirchoff's \qquad law.

Markov Matrices, Population, and Economics

8.3.1 - Find the eigenvalues of this Markov matrix (their sum is the trace):

$$
A=\left(\begin{array}{ll}
.90 & .15 \\
.10 & .85
\end{array}\right)
$$

8.3.2 - Diagonalize the Markov matrix in Problem 1 to $A=S \Lambda S^{-1}$ by finding its other eigenvector:

$$
A=(\quad)\left(\begin{array}{cc}
1 & \\
& .75
\end{array}\right)(\quad) .
$$

What is the limit of $A^{k}=S \Lambda^{k} S^{-1}$ when $\Lambda^{k}=\left(\begin{array}{cc}1 & 0 \\ 0 & .75^{k}\end{array}\right)$ approaches $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$?
8.3.3 - What are the eigenvalues and steady state eigenvectors for these Markov matrices?

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & .2 \\
0 & .8
\end{array}\right) \quad A=\left(\begin{array}{cc}
.2 & 1 \\
.8 & 0
\end{array}\right) \\
& A=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right) .
\end{aligned}
$$

8.3.9 - Prove that the square of a Markov matrix is also a Markov matrix.
8.3.10 If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a Markov matrix, its eigenvalues are 1 and
\qquad _.

