## Math 2270 - Assignment 14

Dylan Zwick

Fall 2012

**Section 8.2** - 1, 2, 3, 4, 5 **Section 8.3** - 1, 2, 3, 9, 10

## 8.2 - Graphs and Networks

**8.2.1** - Write down the  $3 \times 3$  incidence matrix A for the triangle graph. The first row has -1 in column 1 and +1 in column 2. What vectors  $(x_1, x_2, x_3)$  are in its nullspace? How do you know that (1, 0, 0) is not in its row space?

The triangle graph looks like:



**8.2.2** - Write down  $A^T$  for the triangle graph. Find a vector **y** in its nullspace. The components of **y** are current on the edges - how much current is going around the triangle?

**8.2.3** - Eliminate  $x_1$  and  $x_2$  from the third equation to find the echelon matrix U. What tree corresponds to the two nonzero rows of U?

**8.2.4** - Choose a vector  $(b_1, b_2, b_3)$  for which  $A\mathbf{x} = \mathbf{b}$  can be solved, and another vector  $\mathbf{b}$  that allows no solution. How are those  $\mathbf{b}$ 's related to  $\mathbf{y} = (1, -1, 1)$ ?

**8.2.5** - Choose a vector  $(f_1, f_2, f_3)$  for which  $A^T \mathbf{y} = \mathbf{f}$  can be solved, and a vector  $\mathbf{f}$  that allows no solution. How are those  $\mathbf{f}$ 's related to  $\mathbf{x} = (1, 1, 1)$ ? The equation  $A^T \mathbf{y} = \mathbf{f}$  is Kirchoff's \_\_\_\_\_ law.

## Markov Matrices, Population, and Economics

**8.3.1** - Find the eigenvalues of this Markov matrix (their sum is the trace):

$$A = \left(\begin{array}{cc} .90 & .15\\ .10 & .85 \end{array}\right)$$

**8.3.2** - Diagonalize the Markov matrix in Problem 1 to  $A = S\Lambda S^{-1}$  by finding its other eigenvector:

$$A = \begin{pmatrix} & \\ & \end{pmatrix} \begin{pmatrix} 1 & \\ & .75 \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix}.$$

What is the limit of  $A^k = S\Lambda^k S^{-1}$  when  $\Lambda^k = \begin{pmatrix} 1 & 0 \\ 0 & .75^k \end{pmatrix}$  approaches  $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ ?

**8.3.3** - What are the eigenvalues and steady state eigenvectors for these Markov matrices?

$$A = \begin{pmatrix} 1 & .2 \\ 0 & .8 \end{pmatrix} \qquad A = \begin{pmatrix} .2 & 1 \\ .8 & 0 \end{pmatrix}$$
$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}.$$

**8.3.9** - Prove that the square of a Markov matrix is also a Markov matrix.

**8.3.10** If  $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  is a Markov matrix, its eigenvalues are 1 and \_\_\_\_\_. The steady state eigenvector is  $\mathbf{x}_1 =$ \_\_\_\_\_.