

Math 2270 - Assignment 13

Dylan Zwick

Fall 2012

Section 7.1 - 1, 3, 4, 10, 16
Section 7.2 - 5, 14, 15, 17, 26
Section 7.3-1,5, 6, 7, 9

7.1 - The Idea of a Linear Transformation

7.1.1 - A linear transformation must leave the zero vector fixed: $T(0)=$ 0. Prove this from $T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})$ by choosing $\mathbf{w}=$ \vec{Q}. Prove it also from $T(c \mathbf{v})=c T(\mathbf{v})$ by choosing $c=$ - 0 .

$$
\begin{aligned}
T(\vec{v})=T(\vec{v}+\overrightarrow{0}) & =T(\vec{v})+T(\overrightarrow{0}) \\
& \Rightarrow T(\overrightarrow{0})=\overrightarrow{0} \\
T(\overrightarrow{0}) & =T(0 \vec{v})=O T(\vec{v})=\overrightarrow{0}
\end{aligned}
$$

7.1.3 - Which of these transformations are not linear? The input is $\mathbf{v}=$ $\left(v_{1}, v_{2}\right)$:
(a) $T(\mathbf{v})=\left(v_{2}, v_{1}\right) \quad$ Linear
(b) $T(\mathbf{v})=\left(v_{1}, v_{1}\right) \quad$ Linear
(c) $T(\mathbf{v})=\left(0, v_{1}\right) \quad$ Linear
(d) $T(\mathbf{v})=(0,1)$ Not linear
(e) $T(\mathbf{v})=v_{1}-v_{2} \quad L$ inear
(f) $T(\mathbf{v})=v_{1} v_{2} \quad$ Nof linear
7.1.4 - If S and T are linear transformations, is $S(T(\mathbf{v}))$ linear or quadratic?
(a) (Special case) If $S(\mathbf{v})=\mathbf{v}$ and $T(\mathbf{v})=\mathbf{v}$, then $S(T(\mathbf{v}))=\mathbf{v}$ or \mathbf{v}^{2} ?
(b) (General case) $S\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)=S\left(\mathbf{w}_{1}\right)+S\left(\mathbf{w}_{2}\right)$ and $T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=$ $T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)$ combine into

$$
\begin{gathered}
S\left(T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)=S\left(T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)\right)= \\
S\left(T\left(\vec{v}_{1}\right)\right)+S\left(T\left(\vec{v}_{2}\right)\right) .
\end{gathered}
$$

a) $\quad S(T(\vec{v}))=S(\vec{v})=\vec{V}$.
b) $\quad S\left(T\left(\vec{v}_{1}+\vec{v}_{2}\right)\right)=S\left(T\left(\vec{v}_{1}\right)\right)+S\left(T\left(\vec{v}_{2}\right)\right)$
7.1.10 - A linear transformation from \mathbf{V} to \mathbf{W} has an inverse from \mathbf{W} to \mathbf{V} when the range is all of \mathbf{W} and the kernel contains only $\mathbf{v}=\mathbf{0}$. Then $T(\mathbf{v})=\mathbf{w}$ has one solutions \mathbf{v} for each \mathbf{w} in \mathbf{W}. Why are these T 's not invertible?
(a) $T\left(v_{1}, v_{2}\right)=\left(v_{2}, v_{2}\right)$

$$
\mathbf{W}=\mathbb{R}^{2}
$$

(b) $T\left(v_{1}, v_{2}\right)=\left(v_{1}, v_{2}, v_{1}+v_{2}\right)$

$$
\mathbf{W}=\mathbb{R}^{3}
$$

(c) $T\left(v_{1}, v_{2}\right)=v_{1}$

$$
\mathbf{W}=\mathbb{R}^{1}
$$

a) Output is not all of \mathbb{R} ? For example, $(1,2)$ is not in the output.
b) Output not all of \mathbb{R}^{3} ? For example, $(1,1,3)$ is not in the output.
c) kernel is not $\overrightarrow{0}$. For example, $T(0,5)=0$.
7.1.16 - Suppose T transposes every matrix M. Try to find a matrix A which gives $A M=M^{T}$ for every M. Show that no matrix A will do it. To professors: Is this a linear transformation that doesn't come from a matrix?

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & a_{11} \\
0 & a_{21}
\end{array}\right) \\
& \neq\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \text { for any } a_{11}, a_{12}, a_{21}, a_{22}
\end{aligned}
$$

$$
\text { Nope. } M \rightarrow M^{T} \text { is a map from }
$$ \mathbb{R}^{4} to \mathbb{R}^{4}. It would be represented by the 4×4 matrix:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

7.2 - The Matrix of a Linear Transformation
7.2.5 - With bases $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$, suppose $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{2}$ and $T\left(\mathbf{v}_{2}\right)=$ $T\left(\mathbf{v}_{3}\right)=\mathbf{w}_{1}+\mathbf{w}_{3} . T$ is a linear transformation. Find the matrix A and multiply by the vector $(1,1,1)$. What is the output from T when the input is $\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$?

$$
\begin{aligned}
A= & \left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) \\
& T\left(\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}\right)=2 \vec{w}_{1}+\vec{w}_{2}+2 \vec{w}_{3}
\end{aligned}
$$

(a) What matrix transforms $(1,0)$ into $(2,5)$ and $(0,1)$ to $(1,3)$?
(b) What matrix transforms $(2,5)$ to $(1,0)$ and $(1,3)$ to $(0,1)$?
(c) Why does no matrix transform $(2,6)$ to $(1,0)$ and $(1,3)$ to $(0,1)$?
a) $\left(\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right)$
b) $\left(\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right)^{-1}=\left(\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right)$
C) Because $(2,6)=2(1,3)$.

So, if $A(1,3)=(0,1)$
$A(2, \sigma)=(0,2), \operatorname{not}(1,0)$
7.2.15 -
(a) What matrix M transforms $(1,0)$ and $(0,1)$ to (r, t) and (s, u) ?
(b) What matrix N transforms (a, c) and (b, d) to $(1,0)$ and $(0,1)$?
(c) What condition on a, b, c, d will make part (b) impossible?

b)
$\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
c)

If $a d-b c=0$.
7.2.17 - If you keep the same basis vectors but put them in a different order, the change of basis matrix M is a permutation matrix. If you keep the basis vectors in order but change their lengths, M is a \qquad matrix.
7.2.26 - Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are eigenvectors for T. This means $T\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i}$ for $i=1,2,3$. What is the matrix for T when the input and output bases are the \mathbf{v} 's?

7.3 - Diagonalization and the Pseudoinverse
7.3.1 -
(a) Compute $A^{T} A$ and its eigenvalues and unit eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}. Find σ_{1}.

$$
\text { Rank one matrix } \quad A=\left(\begin{array}{cc}
1 & 2 \\
3 & 6
\end{array}\right)
$$

(b) Compute $A A^{T}$ and its eigenvalues and unit eigenvectors \mathbf{u}_{1} and \mathbf{u}_{2}.
(c) Verify that $A \mathbf{v}_{1}=\sigma_{1} \mathbf{u}_{1}$. Put numbers into the SVD:

$$
\begin{gathered}
A=U \Sigma V^{T} \\
\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right)\left(\begin{array}{ll}
\sigma_{1} & \\
& 0
\end{array}\right)\left(\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right)^{T} .
\end{gathered}
$$

a)

$$
\lambda=90
$$

$$
\left(\begin{array}{cc}
-40 & 20 \\
20 & -10
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{1}{2} \quad \vec{v}_{1}=\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}
$$

$$
\lambda=0\left(\begin{array}{cc}
10 & 20 \\
20 & 40
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{-2}{1} \quad \vec{v}_{2}=\binom{-\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}
$$

$$
\sigma_{1}=\sqrt{50}
$$

$$
\begin{aligned}
& A^{+} A=\left(\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 2
\end{array} 0\right) \\
& \left.\begin{array}{ccc}
10-\lambda & 20 \\
20 & 40-\lambda
\end{array} \right\rvert\,=(10-\lambda)(40-\lambda)-400
\end{aligned}
$$

Here is some extra space for problem 7.3.1 if you need it.

$$
\begin{aligned}
& \text { b) } \\
& A A^{+}=\binom{12}{36}\binom{13}{26}=\left(\begin{array}{ll}
5 & 15 \\
15 & 45
\end{array}\right) \\
& \left|\begin{array}{cc}
5-\lambda & 15 \\
15 & 45-\lambda
\end{array}\right|=(5-\lambda)(45-\lambda) 2-15^{2} \\
& =\lambda^{2}-50 \lambda=(\lambda-50) \lambda \\
& \lambda=50 \\
& \left(\begin{array}{cc}
-45 & 19 \\
15 & -5
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{1}{3} \quad \vec{u}=\binom{\frac{1}{\sqrt{10}}}{\frac{3}{\sqrt{10}}} \\
& \lambda=0\left(\begin{array}{cc}
5 & 19 \\
15 & 45
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{3}{-1} \quad \vec{u}_{2}=\binom{\frac{3}{\sqrt{10}}}{-\frac{1}{\sqrt{10}}}
\end{aligned}
$$

c)

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}=\binom{\sqrt{5}}{3 \sqrt{5}}=\sqrt{50}\binom{\frac{1}{\sqrt{10}}}{\frac{3}{\sqrt{10}}} \\
\left(\begin{array}{cc}
1 & 2 \\
3 & 6
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\
\frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{50} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right)
\end{gathered}
$$

7.3.5 - Compute $A^{T} A$ and is eigenvalues and unit eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}. What are the singular values σ_{1} and σ_{2} for this matrix A ?

$$
\left.\begin{array}{c}
A^{T}=\left(\begin{array}{cc}
3 & -1 \\
3 & 1
\end{array}\right) \quad A^{3} A=\left(\begin{array}{ll}
3 & -1 \\
-1 & 1
\end{array}\right) \\
3 \\
1
\end{array}\right)\left(\begin{array}{ll}
3 & 3 \\
-1 & 1
\end{array}\right) .\left(\begin{array}{cc}
0 & 8 \\
8 & 10
\end{array}\right) .
$$

7.3.6 - $A A^{T}$ has the same eigenvalues σ_{1}^{2} and σ_{2}^{2} as $A^{T} A$. Find unit eigenvectors \mathbf{u}_{1} and \mathbf{u}_{2}. Put numbers into the SVD:

$$
A=\left(\begin{array}{cc}
3 & 3 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & \\
& \sigma_{2}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right)^{T}
$$

$$
\left.\begin{array}{l}
A A^{T}=\left(\begin{array}{cc}
3 & 3 \\
-1
\end{array} 1\right)\left(\begin{array}{ll}
3 & -1 \\
3 & 1
\end{array}\right)=\left(\begin{array}{cc}
18 & 0 \\
0 & 2
\end{array}\right) \\
\lambda=18 \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{u}_{1}=\binom{1}{0} \\
\lambda=2 \quad\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \vec{u}_{2}=\binom{0}{-1} \\
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\sqrt{18} & 0 \\
0 & \sqrt{2}
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\sqrt{2}
\end{array}-\frac{1}{\sqrt{2}}\right.
\end{array}\right) ~ \$
$$

7.3.7 In Problem 6, multiply columns times rows to show that $A=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+$ $\sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T}$. Prove from $A=U \Sigma V^{T}$ that every matrix of rank r is the sum of r matrices of rank one.

$$
\begin{gathered}
\vec{u}, \vec{v}, \top=\binom{1}{0}\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0
\end{array}\right) \\
\vec{u}_{2} \vec{v}_{2}{ }^{\top}=\binom{0}{-1}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)=\left(\begin{array}{cc}
0 & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
\left(\begin{array}{cc}
3 & 3 \\
-1 & 1
\end{array}\right)=3 \sqrt{2}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0
\end{array}\right)+\sqrt{2}\left(\begin{array}{cc}
0 & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
U \Sigma V^{T}=\sum_{i=1}^{r} \sigma, \vec{u}_{i} \vec{v}_{i}^{\top}
\end{gathered}
$$

7.3.9 The pseudoinverse of this A is the same as A^{-1} because
A invertible.

