Math 2270 - Assignment 13

Dylan Zwick
Fall 2012

Section 7.1 - 1, 3, 4, 10, 16
Section 7.2 - 5, 14, 15, 17, 26
Section 7.3-1,5, 6, 7, 9

7.1 - The Idea of a Linear Transformation

7.1.1 - A linear transformation must leave the zero vector fixed: $T(\mathbf{0})=$ 0. Prove this from $T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})$ by choosing $\mathbf{w}=$
\qquad . Prove it also from $T(c \mathbf{v})=c T(\mathbf{v})$ by choosing $c=$
7.1.3 - Which of these transformations are not linear? The input is $\mathbf{v}=$ $\left(v_{1}, v_{2}\right)$:
(a) $T(\mathbf{v})=\left(v_{2}, v_{1}\right)$
(b) $T(\mathbf{v})=\left(v_{1}, v_{1}\right)$
(c) $T(\mathbf{v})=\left(0, v_{1}\right)$
(d) $T(\mathbf{v})=(0,1)$
(e) $T(\mathbf{v})=v_{1}-v_{2}$
(f) $T(\mathbf{v})=v_{1} v_{2}$
7.1.4 - If S and T are linear transformations, is $S(T(\mathbf{v}))$ linear or quadratic?
(a) (Special case) If $S(\mathbf{v})=\mathbf{v}$ and $T(\mathbf{v})=\mathbf{v}$, then $S(T(\mathbf{v}))=\mathbf{v}$ or \mathbf{v}^{2} ?
(b) (General case) $S\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)=S\left(\mathbf{w}_{1}\right)+S\left(\mathbf{w}_{2}\right)$ and $T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=$ $T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)$ combine into

$$
\begin{gathered}
S\left(T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)=S(\square)= \\
+\ldots
\end{gathered}
$$

7.1.10 - A linear transformation from \mathbf{V} to \mathbf{W} has an inverse from \mathbf{W} to \mathbf{V} when the range is all of \mathbf{W} and the kernel contains only $\mathbf{v}=\mathbf{0}$. Then $T(\mathbf{v})=\mathbf{w}$ has one solutions \mathbf{v} for each \mathbf{w} in \mathbf{W}. Why are these T 's not invertible?
(a) $T\left(v_{1}, v_{2}\right)=\left(v_{2}, v_{2}\right)$
$\mathbf{W}=\mathbb{R}^{2}$
(b) $T\left(v_{1}, v_{2}\right)=\left(v_{1}, v_{2}, v_{1}+v_{2}\right)$
$\mathbf{W}=\mathbb{R}^{3}$
(c) $T\left(v_{1}, v_{2}\right)=v_{1}$ $\mathbf{W}=\mathbb{R}^{1}$
7.1.16 - Suppose T transposes every matrix M. Try to find a matrix A which gives $A M=M^{T}$ for every M. Show that no matrix A will do it. To professors: Is this a linear transformation that doesn't come from a matrix?

7.2 - The Matrix of a Linear Transformation

7.2.5 - With bases $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$, suppose $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{2}$ and $T\left(\mathbf{v}_{2}\right)=$ $T\left(\mathbf{v}_{3}\right)=\mathbf{w}_{1}+\mathbf{w}_{3} . T$ is a linear transformation. Find the matrix A and multiply by the vector $(1,1,1)$. What is the output from T when the input is $\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$?

7.2.14 -

(a) What matrix transforms $(1,0)$ into $(2,5)$ and $(0,1)$ to $(1,3)$?
(b) What matrix transforms $(2,5)$ to $(1,0)$ and $(1,3)$ to $(0,1)$?
(c) Why does no matrix transform $(2,6)$ to $(1,0)$ and $(1,3)$ to $(0,1)$?

7.2.15 -

(a) What matrix M transforms $(1,0)$ and $(0,1)$ to (r, t) and (s, u) ?
(b) What matrix N transforms (a, c) and (b, d) to $(1,0)$ and $(0,1)$?
(c) What condition on a, b, c, d will make part (b) impossible?
7.2.17 - If you keep the same basis vectors but put them in a different order, the change of basis matrix M is a matrix. If you keep the basis vectors in order but change their lengths, M is a \qquad matrix.
7.2.26 - Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are eigenvectors for T. This means $T\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i}$ for $i=1,2,3$. What is the matrix for T when the input and output bases are the $\mathbf{v} \mathbf{\prime}$?

7.3 - Diagonalization and the Pseudoinverse

7.3.1 -

(a) Compute $A^{T} A$ and its eigenvalues and unit eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}. Find σ_{1}.

$$
\text { Rank one matrix } \quad A=\left(\begin{array}{cc}
1 & 2 \\
3 & 6
\end{array}\right)
$$

(b) Compute $A A^{T}$ and its eigenvalues and unit eigenvectors \mathbf{u}_{1} and \mathbf{u}_{2}.
(c) Verify that $A \mathbf{v}_{1}=\sigma_{1} \mathbf{u}_{1}$. Put numbers into the SVD:

$$
\begin{gathered}
A=U \Sigma V^{T} \\
\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right)\left(\begin{array}{ll}
\sigma_{1} & \\
& 0
\end{array}\right)\left(\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right)^{T}
\end{gathered}
$$

Here is some extra space for problem 7.3.1 if you need it.
7.3.5 - Compute $A^{T} A$ and is eigenvalues and unit eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}. What are the singular values σ_{1} and σ_{2} for this matrix A ?

$$
A=\left(\begin{array}{cc}
3 & 3 \\
-1 & 1
\end{array}\right)
$$

7.3.6 - $A A^{T}$ has the same eigenvalues σ_{1}^{2} and σ_{2}^{2} as $A^{T} A$. Find unit eigenvectors \mathbf{u}_{1} and \mathbf{u}_{2}. Put numbers into the SVD:

$$
A=\left(\begin{array}{cc}
3 & 3 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & \\
& \sigma_{2}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right)^{T}
$$

7.3.7 In Problem 6, multiply columns times rows to show that $A=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+$ $\sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T}$. Prove from $A=U \Sigma V^{T}$ that every matrix of rank r is the sum of r matrices of rank one.
7.3.9 The pseudoinverse of this A is the same as \qquad because
\qquad _.

