Math 2270 - Assignment 12

Dylan Zwick
Fall 2012

Section 6.5-2, 3, 7, 11, 16
Section 6.6-3, 9, 10, 12, 13
Section 6.7-1, 4, 6, 7, 9

6.5 - Positive Definite Matrices

6.5.2 - Which of $A_{1}, A_{2}, A_{3}, A_{4}$ has two positive eigenvalues? Use the test, don't compue the λ^{\prime} 's. Find an \mathbf{x} so that $\mathbf{x}^{T} A_{1} \mathbf{x}<0$, so A_{1} fails the test.

$$
\begin{aligned}
A_{1}=\left(\begin{array}{ll}
5 & 6 \\
6 & 7
\end{array}\right) \quad A_{2} & =\left(\begin{array}{cc}
-1 & -2 \\
-2 & -5
\end{array}\right) \quad A_{3}=\left(\begin{array}{cc}
1 & 10 \\
10 & 100
\end{array}\right) \\
A_{4} & =\left(\begin{array}{cc}
1 & 10 \\
10 & 101
\end{array}\right) .
\end{aligned}
$$

6.5.3 - For which numbers b and c are these matrices positive definite?

$$
A=\left(\begin{array}{cc}
1 & b \\
b & 9
\end{array}\right) \quad A=\left(\begin{array}{cc}
2 & 4 \\
4 & c
\end{array}\right) \quad A=\left(\begin{array}{cc}
c & b \\
b & c
\end{array}\right)
$$

6.5.7 - Test to see if $R^{T} R$ is positive definite in each case:

$$
\begin{array}{cc}
R=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right) & \text { and } \quad R=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \text { and } \\
R=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right) .
\end{array}
$$

6.5.11 - Compute the three upper left determinants of A to establish the positive definiteness. Verify that their ratios give the second and third pivots.

$$
A=\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 8
\end{array}\right)
$$

6.5.16 - A positive definite matrix cannot have a zero (or even worse, a negative number) on its diagonal. Show that this matrix fails to have $\mathbf{x}^{T} A \mathbf{x}>0$:

$$
\begin{gathered}
\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ccc}
4 & 1 & 1 \\
1 & 0 & 2 \\
1 & 2 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { is not positive when } \\
\left(x_{1}, x_{2}, x_{3}\right)=
\end{gathered}
$$

6.6 - Similar Matrices

6.6.3 - Show that A and B are similar by finding M so that $B=M^{-1} A M$:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \\
& A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right) .
\end{aligned}
$$

6.6.9 - By direct multiplication find A^{2} and A^{3} and A^{5} when

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Guess the form of A^{k}. Set $k=0$ to find A^{0} and $k=-1$ to find A^{-1}.
6.6.10 - By direct multiplication, find J^{2} and J^{3} when

$$
J=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

Guess the form of J^{k}. Set $k=0$ to find J^{0}. Set $k=-1$ to find J^{-1}.
6.6.12 - These Jordan matrices have eigenvalues $0,0,0,0$. They have two eigenvectors (one from each block). But the block sizes don't match and they are not similar:

$$
J=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad K=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

For any matrix M, compare $J M$ with $M K$. If they are equal show that M is not invertible. Then $M^{-1} J M=K$ is impossible: J is not similar to K.
6.6.13 Based on Problem 12, what are the five Jordan forms when $\lambda=$ $0,0,0,0$?

6.7-Singular Value Decomposition (SVD)

6.7.1 - Find the eigenvalues and unit eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ of $A^{T} A$. Then find $\mathbf{u}_{1}=A \mathbf{v}_{1} / \sigma_{1}:$

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right) \text { and } A^{T} A=\left(\begin{array}{cc}
10 & 20 \\
20 & 40
\end{array}\right) \text { and } A A^{T}=\left(\begin{array}{cc}
5 & 15 \\
15 & 45
\end{array}\right) .
$$

Verify that \mathbf{u}_{1} is a unit eigenvectors of $A A^{T}$. Complete the matrices U, Σ, V.

$$
\text { SVD } \quad\left(\begin{array}{cc}
1 & 2 \\
3 & 5
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right)^{T} .
$$

6.7.4 - Find the eigenvalues and unit eigenvectors of $A^{T} A$ and $A A^{T}$. Keep each $A \mathbf{v}=\sigma \mathbf{u}$:

Fibonacci Matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Construct the singular value decomposition and verify that A equals $U \Sigma V^{T}$.
6.7.6 - Compute $A^{T} A$ and $A A^{T}$ and their eigenvalues and unit eigenvectors for this A :

$$
\text { Rectangular Matrix } \quad A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) .
$$

Multiply the matrices $U \Sigma V^{T}$ to recover $A . \Sigma$ has the same shape as A.
6.7.7 - What is the closest rank-one approximation to that 3 by 2 matrix?
6.7.9 - Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are orthonormal bases for \mathbb{R}^{n}. Construct the matrix A that transforms each \mathbf{v}_{j} into \mathbf{u}_{j} to give $A \mathbf{v}_{1}=$ $\mathbf{u}_{1}, \ldots, A \mathbf{v}_{n}=\mathbf{u}_{n}$.

