Math 2270 - Assignment 11

Dylan Zwick

Fall 2012

Section 6.1-2, 3, 5, 16, 17
Section 6.2-1, 2, 15, 16, 26
Section 6.4-1, 3, 5, 14, 23
6.1- Introduction to Eigenvalues
6.1.2 Find the eigenvalues and the eigenvectors of these two matrices:

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right) \quad \text { and } \quad A+I=\left(\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right)
$$

$A+I$ has the \qquad same \qquad eigenvectors as A. Its eigenvalues are \qquad by 1 .

$$
\begin{aligned}
\left|\begin{array}{cc}
1-\lambda & 4 \\
2 & 3-\lambda
\end{array}\right| & =(1-\lambda)(3-\lambda)-8=3-\lambda-3 \lambda+\lambda^{2}-8 \\
& =\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1)
\end{aligned}
$$

Eigenvalues $\lambda=5,-1$

$$
\begin{aligned}
& \left(\begin{array}{cc}
-4 & 4 \\
2 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{1}{1} \text { eigenvector } \\
& \left(\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{2}{-1} \text { eigenvector }
\end{aligned}
$$

So, $\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$ has eigenvalues $\lambda=9,-1 \omega /$ respective eigenerctas $\binom{1}{1}\binom{1}{-1}$

$$
\left|\begin{array}{cc}
2-\lambda & 4 \\
2 & 4-\lambda
\end{array}\right|=(2-\lambda)(4-\lambda)-8=8-6 \lambda+\lambda^{2}-8=\lambda^{2}-6 \lambda=\lambda(\lambda-6)
$$

Eigenvalue, $\lambda=6,0$
$\left(\begin{array}{cc}-4 & 4 \\ 2 & -2\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{1}{1}$ eigenvector
$\left(\begin{array}{ll}2 & 4 \\ 2 & 4\end{array}\right)\binom{x_{1}}{y_{2}}=\binom{0}{0} \Rightarrow\binom{2}{-1} \underset{2}{-i g e n v e c t o r ~}$
So, $\left(\begin{array}{ll}2 & 4 \\ 2 & 4\end{array}\right)$ has eigenvalues $\lambda=6,0 \mathrm{c} /$ respective eigenvectors $\binom{1}{1},\binom{2}{-1}$.
6.1.3 Compute the eigenvalues and eigenvectors of A and A^{-1}. Check the trace!

$$
A=\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{cc}
-\frac{1}{2} & 1 \\
\frac{1}{2} & 0
\end{array}\right)
$$

A^{-1} has the reciprocal eigenvectors as A. When A, has eigenvalues λ_{1} and λ_{2}, its inverse has eigenvalues \qquad -.

$$
\left|\begin{array}{c}
0-\lambda^{2} \\
1 \\
1-\lambda
\end{array}\right|=-\lambda(1-\lambda)-2=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)
$$

Eigenvalues $\lambda=2,-1$
$\left(\begin{array}{cc}-2 & 2 \\ 1 & -1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{1}{1}$ eigenvector
$\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{2}{-1}$ eigenvector
$\left|\begin{array}{cc}-\frac{1}{2}-\lambda & 1 \\ \frac{1}{2} & -\lambda\end{array}\right|=\left(-\frac{1}{2}-\lambda\right)(-\lambda)-\frac{1}{2}=\lambda^{2}+\frac{1}{2} \lambda-\frac{1}{2}=(\lambda+1)\left(\lambda-\frac{1}{2}\right)$
Eigenvalues $\lambda=\frac{1}{2},-1$
$\left(\begin{array}{cc}-1 & 1 \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{1}{1}$ eigenvector
$\left(\begin{array}{ll}\frac{1}{2} & 1 \\ \frac{1}{2} & 1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{2}{-1}$ eigen vector
So, $\left(\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right)$ has eigenvalues $\lambda=2,-1,\left(\begin{array}{cc}-\frac{1}{2} & 1 \\ \frac{1}{2} & 0\end{array}\right)$ has eigenvalues $\frac{1}{2},-1$, and b_{3} th have eigenvectors $\binom{1}{1},\binom{2}{-1}$.
6.1.5 Find the eigenvalues of A and B (easy for triangular matrices) and $A+B:$
$A=\left(\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right) \quad$ and $\quad B=\left(\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right) \quad$ and

$$
A+B=\left(\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right)
$$

Eigenvalues of $A+B$ (are equal to) are not equal to) eigenvalues of A plus eigenvalues of B.
A) $\left|\begin{array}{cc}3-\lambda & 0 \\ 1 & 1-\lambda\end{array}\right|=(3-\lambda)(1-\lambda) \Rightarrow \underset{\substack{\text { eigenvalues } \\ \lambda=3,1}}{\substack{\text { a }}}$
B) $\left|\begin{array}{cc}1-\lambda & 1 \\ 0 & 3-\lambda\end{array}\right|=(1-\lambda)(3-\lambda) \Rightarrow \begin{gathered}\text { eigenvalues } \\ \lambda=3,1\end{gathered}$

$$
\begin{aligned}
A+B)\left|\begin{array}{cc}
4-\lambda & 1 \\
\mid & 4-\lambda
\end{array}\right| & =(4-\lambda)^{2}-1=\lambda^{2}-8 \lambda+15 \\
& =(\lambda-5)(\lambda-3) \quad \begin{array}{l}
\text { eigenvalues } \\
\\
\lambda=5,3
\end{array}
\end{aligned}
$$

6.1.16 The determinant of A equals the product $\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. Start with the polynomial $\operatorname{det}(A-\lambda I)$ separated into its n factors (always possible). Then set $\lambda=0$:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) \\
& \text { so } \operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
\end{aligned}
$$

Check this rule in Example 1 where the Markov matrix has $\lambda=1$ and $\frac{1}{2}$.

$$
\begin{array}{r}
\left|\begin{array}{rr}
-8 & -3 \\
-2 & -7
\end{array}\right|=.56-.06=.9=\frac{1}{2}=(1)\left(\frac{1}{2}\right) . \\
\text { So, it checks } \\
\text { out. }
\end{array}
$$

6.1.17 The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { has } \quad \operatorname{det}(A-\lambda I)=\lambda^{2}-(a+d) \lambda+a d-b c=0
$$

The quadratic formula gives the eigenvalues $\lambda=(a+d+\sqrt{)} / 2$ and
$\lambda=\underline{ }$.Their sum is \qquad _.
If A has $\lambda_{1}=3$ and $\lambda_{2}=4$ then $\operatorname{det}(A-\lambda I)=(\lambda-3)(\lambda-4)$

Eigenvalues

$$
\lambda=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2 a}
$$

$$
=\frac{(a+d) \pm \sqrt{a^{2}+2 a d+d^{2}-4 a d+4 b c}}{2}
$$

$$
=\frac{(a+d) \pm \sqrt{(a-d)^{2}+4 b c}}{2}
$$

$$
\text { Sam } 13 \frac{a+d+\sqrt{(a-d)^{2}+4 b c}}{2}+\frac{a+d-\sqrt{(a-d)^{2}+4 b c}}{2}=a+d
$$

6.2 - Diagonalizing a Matrix
6.2.1 (a) Factor these two matrices into $A=S \Lambda S^{-1}$:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right) .
$$

(b) If $A=S \Lambda S^{-1}$ then $A^{3}=()()()$ and $A^{-1}=()()()$.

$$
\begin{aligned}
& \text { a) }\left|\begin{array}{cc}
1-\lambda & 2 \\
0 & 3-\lambda
\end{array}\right|=(1-\lambda)(3-\lambda) \text { Eigenvalues } \lambda=1,3 \\
& \lambda=1\left(\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{1}{0} \text { eigenvector } \\
& \lambda=3\left(\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{1}{1} \text { eigenvector } \\
& s=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad S^{-1}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \\
& \left|\begin{array}{cc}
1-\lambda & 1 \\
3 & 3-\lambda
\end{array}\right|=(1-\lambda)(3-\lambda)-3=\lambda^{2}-4 \lambda=\lambda(\lambda-4) \lambda=0,4 \\
& \lambda=0 \quad\left(\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{1}{-1} \text { eigenvector } \\
& \lambda=4 \quad\left(\begin{array}{cc}
-3 & 1 \\
3 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow\binom{1}{3} \text { eigenvector } \\
& S=\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right), S^{-1}=\frac{1}{4}\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right) \\
& A^{3}=S A^{3} S^{-1} \\
& \left(\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-k & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right)\left(\begin{array}{cc}
\frac{3}{4} & -\frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right)
\end{aligned}
$$

6.2.2 If A has $\lambda_{1}=2$ with eigenvector $\mathbf{x}_{1}=\binom{1}{0}$ and $\lambda_{2}=5$ with $\mathbf{x}_{2}=$ $\binom{1}{1}$, use $S \Lambda S^{-1}$ to find A. No other matrix has the same λ^{\prime} s and

$$
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad S^{-1}=\left(\begin{array}{ll}
1 & -1 \\
0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 & 5 \\
0 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 3 \\
0 & 5
\end{array}\right)
\end{aligned}
$$

6.2.15 $A^{k}=S \Lambda^{k} S^{-1}$ approaches the zero matrix as $k \rightarrow \infty$ if and only if every λ has absolute value less than Which of these -matrices has $A^{k} \rightarrow 0$?

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cc}
.6 & .9 \\
.4 & .1
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{ll}
.6 & .9 \\
.1 & .6
\end{array}\right) \\
\left(A_{1}\right) \#\left|\begin{array}{c}
-\lambda+-6 \\
-4-\lambda \\
4
\end{array}\right|=(.6-\lambda)(.1-\lambda)-, 0,36 \\
=\lambda^{2}-, 7 \lambda-.30=(\lambda-1)(\lambda+, 3)
\end{gathered}
$$

Eigen valuer $1,-3$. So, $A, k \nrightarrow 0$
Does not approach 0 ,
$\left(A_{2}\right)$

$$
\begin{aligned}
& \left|\begin{array}{cc}
.6-\lambda & -9 \\
.1 & .6-\lambda
\end{array}\right|=(.6-\lambda)^{2}-.09 \\
= & \lambda^{2}-1.2 \lambda+.36-.09=\lambda^{2}-1.2 \lambda+.27 \\
= & (\lambda-.9)(\lambda-.3)
\end{aligned}
$$

Eigenvalues $, 9,3$, So, $A_{2}{ }^{k} \rightarrow 0$
Does approach 0 .
6.2.16 (Recommended) Find Λ and S to diagonalize A_{1} in Problem 15. What is the limit of Λ^{k} as $k \rightarrow \infty$? What is the limit of $S \Lambda^{k} S^{-1}$? In the columns of this limiting matrix you see the eigenvector of $\lambda=1$.

$$
\begin{aligned}
& \Delta=\left(\begin{array}{rr}
1 & 0 \\
0 & -.3
\end{array}\right) \quad\left(\begin{array}{cc}
-4 & -9 \\
-4 & -.9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& \vec{x}_{1}=\binom{.9}{.4} \\
& \left(\begin{array}{cc}
-9 & -9 \\
-4 . & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}_{2}=\binom{1}{-1} \\
& S=\left(\begin{array}{rr}
-9 & 1 \\
-4 & -1
\end{array}\right) \quad 5^{-1}=-\frac{1}{1.3}\left(\begin{array}{cc}
-1 & -1 \\
-4,9
\end{array}\right) \\
& \lim _{k \rightarrow \infty}\left(\begin{array}{rr}
1 & 0 \\
0 & -3
\end{array}\right)^{k}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \lim _{k \rightarrow \infty} S \Delta^{k} S^{-1}=-\frac{1}{1.3}\left(\begin{array}{cc}
-9 & 1 \\
-4 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
-.4 & -9
\end{array}\right) \\
& \quad=-\frac{1}{1.3}\left(\begin{array}{rr}
-9 & 1 \\
-4 & -1
\end{array}\right)\left(\begin{array}{rr}
-1 & -1 \\
0 & 0
\end{array}\right)=-\frac{1}{1.3}\left(\begin{array}{cc}
-9 & -.9 \\
-.4 & -.4
\end{array}\right) \\
& \quad=\frac{1}{1-3}\left(\begin{array}{rr}
-9 & -9 \\
-4 & -4
\end{array}\right)
\end{aligned}
$$

6.2.26 (Recommended) Suppose $A \mathbf{x}=\lambda \mathbf{x}$. If $\lambda=0$ then \mathbf{x} is in the nullspace. If $\lambda \neq 0$ then \mathbf{x} is in the column space. Those spaces have dimensions $(n-r)+r=n$. So why doesn't every square matrix have n linearly independent eigenvectors?

The column space and nullspare are not orthogonal. The column space is orthogonal to the left nullspare, and the nullspace is orthogonal to the rowspace-

For example =

$$
\begin{gathered}
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { has } \\
\vec{N}(A)=\vec{C}(A)=\operatorname{span}\left\{\binom{1}{0}\right\}
\end{gathered}
$$

6.4 -Symmetric Matrices
6.4.1 Write A as $M+N$, symmetric matrix plus skew-symmetric matrix:

$$
A=\left(\begin{array}{lll}
1 & 2 & 4 \\
4 & 3 & 0 \\
8 & 6 & 5
\end{array}\right)=M+N
$$

$$
\left(M^{T}=M, N^{T}=-N\right)
$$

For any square matrix, $M=\frac{A+A^{T}}{2}$ and $N=$ \qquad $A-A^{+}$ up to A.

$$
\begin{aligned}
& A^{+}=\left(\begin{array}{lll}
1 & 4 & 8 \\
2 & 3 & 6 \\
4 & 0 & 5
\end{array}\right) \\
& M=\frac{1}{2}\left(\left(\begin{array}{lll}
1 & 2 & 4 \\
4 & 3 & 0 \\
8 & 6 & 5
\end{array}\right)+\left(\begin{array}{lll}
1 & 4 & 8 \\
2 & 3 & 6 \\
4 & 0 & 5
\end{array}\right)\right)=\left(\begin{array}{lll}
1 & 3 & 6 \\
3 & 3 & 3 \\
6 & 3 & 5
\end{array}\right) \\
& N=\frac{1}{2}\left(\left(\begin{array}{lll}
1 & 2 & 4 \\
4 & 3 & 0 \\
8 & 6 & 9
\end{array}\right)-\left(\begin{array}{ccc}
1 & 4 & 8 \\
2 & 3 & 6 \\
4 & 0 & 5
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & -1 & -2 \\
1 & 0 & -3 \\
2 & 3 & 0
\end{array}\right)
\end{aligned}
$$

6.4.3 Find the eigenvalues and the unit eigenvectors of

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right) \\
\left|\begin{array}{ccc}
2-\lambda & 2 & 2 \\
2 & -\lambda & 0 \\
2 & 0 & -\lambda
\end{array}\right| & =(2-\lambda)(-\lambda)(-\lambda)+4 \lambda+4 \lambda \\
& =-\lambda^{3}+2 \lambda^{2}+8 \lambda=-\lambda\left(\lambda^{2}-2 \lambda-8\right) \\
& =-\lambda(\lambda-4)(\lambda+2)
\end{aligned}
$$

Eigenvalues $\lambda=0,4,-2$

$$
\begin{aligned}
& \lambda=0\left(\begin{array}{ccc}
2 & 2 & 2 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \vec{x}_{1}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \quad \hat{\vec{x}}_{1}=\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right) \\
& \lambda=4\left(\begin{array}{ccc}
-2 & 2 & 2 \\
2 & -4 & 0 \\
2 & -4 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \vec{x}_{2}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) \quad \hat{x_{2}}=\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right) \\
& \lambda=-2\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \vec{x}_{3}=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) \quad \hat{x_{3}}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

6.4.5 Find an orthogonal matrix Q that diagonalizes this symmetric matrix:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & -2 \\
2 & -2 & 0
\end{array}\right) \\
& \left|\begin{array}{ccc}
1-\lambda & 0 & 2 \\
0 & -1-\lambda & -2 \\
2 & -2 & -\lambda
\end{array}\right|=(1-\lambda)(\lambda(\lambda+1)-4)+2(\lambda+1) 2 \\
& =\lambda^{2}+\lambda-4-\lambda^{3}-\lambda^{2}+4 \lambda+4 \lambda+4 \\
& =-\lambda^{3}+9 \lambda=-\lambda(\lambda+3)(\lambda-3)
\end{aligned}
$$

Eigenvalues $\lambda=0,3,-3$

$$
\begin{aligned}
& \lambda=0 \quad\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & -2 \\
2 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \vec{x}_{1}=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \quad \vec{x}_{1}=\frac{1}{3}\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \\
& \lambda=3 \quad\left(\begin{array}{ccc}
-2 & 0 & 2 \\
0 & -4 & -2 \\
2 & -2 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \vec{x}_{2}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right) \quad \vec{x}_{2}=\frac{1}{3}\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right) \\
& \lambda=-3 \quad\left(\begin{array}{ccc}
4 & 0 & 2 \\
0 & 2 & -2 \\
2 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \vec{x}_{3}=\left(\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right) \quad \hat{\vec{x}}_{3}=\frac{1}{3}\left(\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right)
\end{aligned}
$$

$$
Q=\frac{1}{3}\left(\begin{array}{rrr}
2 & 2 & 1 \\
2 & -1 & -2 \\
-1 & 2 & -2
\end{array}\right)
$$

6.4.14 (Recommended) This matrix M is skew-symmetric and also \qquad Then all its eigenvalues are pure imaginary and they also have $|\lambda|=$ 1. ($\|M \mathbf{x}\|=\|\mathbf{x}\|$ for every \mathbf{x} so $\|\lambda \mathbf{x}\|=\|\mathbf{x}\|$ for eigenvectors.) Find all four eigenvalues from the trace of M :

$$
\begin{aligned}
& M=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
-1 & 0 & -1 & 1 \\
-1 & 1 & 0 & -1 \\
-1 & -1 & 1 & 0
\end{array}\right) \text { can only have eigenvalues } i \text { or }-i \text {. } \\
& \text { There must be repeated eigenvalues } \\
& i, i,-i,-i \text { as } \\
& 0+0+0+0=i+i-i-i=0
\end{aligned}
$$

6.4.23 (Recommended) To which of these classes do the matrices A and B belong: Invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad B=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Which of these factorizations are possible for A and $B: L U, Q R, S \Lambda S^{-1}, Q \Lambda Q^{T}$?
A) Invertible, orthogonal, permutation, $\lambda^{2}(1-\lambda)-1$ diagonalizable, Markov. (Not projection $\lambda^{2}-\lambda^{3}-1$ as $p^{2} \neq \rho$).

Factorizations: $Q K, S \Delta s^{-1}, Q \Delta Q^{+}$
B) Diagonalizable, Projection, Markov.

Factorizations: $L U, S \triangle S^{-1}, Q \Delta Q^{J}$.

