Math 2270 - Assignment 11

Dylan Zwick

Fall 2012

Section 6.1 - 2, 3, 5, 16, 17 **Section 6.2** - 1, 2, 15, 16, 26 **Section 6.4** - 1, 3, 5, 14, 23

6.1 - Introduction to Eigenvalues

6.1.2 Find the eigenvalues and the eigenvectors of these two matrices:

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \quad \text{and} \quad A + I = \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix}.$$

 A+I has the ______ eigenvectors as A. Its eigenvalues are ______ by 1.

6.1.3 Compute the eigenvalues and eigenvectors of A and A^{-1} . Check the trace!

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad A^{-1} = \begin{pmatrix} -\frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{pmatrix}.$$

 A^{-1} has the ______ eigenvectors as A. When A has eigenvalues λ_1 and λ_2 , its inverse has eigenvalues _____

.

6.1.5 Find the eigenvalues of *A* and *B* (easy for triangular matrices) and A + B:

$$A = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix} \text{ and } A + B = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}.$$

Eigenvalues of A + B (are equal to)(are not equal to) eigenvalues of A plus eigenvalues of B.

6.1.16 The determinant of *A* **equals the product** $\lambda_1 \lambda_2 \cdots \lambda_n$. Start with the polynomial $det(A - \lambda I)$ separated into its *n* factors (always possible). Then set $\lambda = 0$:

$$det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

so $det(A) =$ _____.

Check this rule in Example 1 where the Markov matrix has $\lambda = 1$ and $\frac{1}{2}$.

6.1.17 The sum of the diagonal entries (the *trace*) equals the sum of the eigenvalues:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 has $det(A - \lambda I) = \lambda^2 - (a + d)\lambda + ad - bc = 0.$

The quadratic formula gives the eigenvalues $\lambda = (a + d + \sqrt{)}/2$ and $\lambda =$ ______. Their sum is ______. If *A* has $\lambda_1 = 3$ and $\lambda_2 = 4$ then $det(A - \lambda I) =$ ______.

6.2 - Diagonalizing a Matrix

6.2.1 (a) Factor these two matrices into $A = S\Lambda S^{-1}$:

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}.$$

(b) If $A = S\Lambda S^{-1}$ then $A^3 = ()()()$ and $A^{-1} = ()()()$.

6.2.2 If *A* has $\lambda_1 = 2$ with eigenvector $\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\lambda_2 = 5$ with $\mathbf{x}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, use $S\Lambda S^{-1}$ to find *A*. No other matrix has the same λ 's and \mathbf{x} 's.

6.2.15 $A^k = S\Lambda^k S^{-1}$ approaches the zero matrix as $k \to \infty$ if and only if every λ has absolute value less than _____. Which of these matrices has $A^k \to 0$?

$$A_1 = \begin{pmatrix} .6 & .9 \\ .4 & .1 \end{pmatrix}$$
 and $A_2 = \begin{pmatrix} .6 & .9 \\ .1 & .6 \end{pmatrix}$.

6.2.16 (Recommended) Find Λ and S to diagonalize A_1 in Problem 15. What is the limit of Λ^k as $k \to \infty$? What is the limit of $S\Lambda^k S^{-1}$? In the columns of this limiting matrix you see the ______.

6.2.26 (Recommended) Suppose $A\mathbf{x} = \lambda \mathbf{x}$. If $\lambda = 0$ then \mathbf{x} is in the nullspace. If $\lambda \neq 0$ then \mathbf{x} is in the column space. Those spaces have dimensions (n - r) + r = n. So why doesn't every square matrix have n linearly independent eigenvectors?

6.4 - Symmetric Matrices

6.4.1 Write A as M + N, symmetric matrix plus skew-symmetric matrix:

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 4 & 3 & 0 \\ 8 & 6 & 5 \end{pmatrix} = M + N \qquad (M^T = M, N^T = -N).$$

For any square matrix, $M = \frac{A+A^T}{2}$ and N =______add up to A.

6.4.3 Find the eigenvalues and the unit eigenvectors of

$$A = \left(\begin{array}{rrrr} 2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{array}\right)$$

6.4.5 Find an orthogonal matrix *Q* that diagonalizes this symmetric matrix:

$$A = \left(\begin{array}{rrrr} 1 & 0 & 2\\ 0 & -1 & -2\\ 2 & -2 & 0 \end{array}\right).$$

6.4.14 (Recommended) This matrix *M* is skew-symmetric and also ______ Then all its eigenvalues are pure imaginary and they also have $|\lambda| = 1$. ($||M\mathbf{x}|| = ||\mathbf{x}||$ for every \mathbf{x} so $||\lambda\mathbf{x}|| = ||\mathbf{x}||$ for eigenvectors.) Find all four eigenvalues from the trace of *M*:

$$M = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 1 & 1 & 1\\ -1 & 0 & -1 & 1\\ -1 & 1 & 0 & -1\\ -1 & -1 & 1 & 0 \end{pmatrix}$$
 can only have eigenvalues *i* or *-i*.

6.4.23 (Recommended) To which of these classes do the matrices *A* and *B* belong: Invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \qquad B = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Which of these factorizations are possible for A and B: $LU, QR, S\Lambda S^{-1}, Q\Lambda Q^T$?