Math 2270 - Assignment 11

Dylan Zwick

Fall 2012

Section 6.1-2, 3, 5, 16, 17
Section 6.2-1, 2, 15, 16, 26
Section 6.4-1, 3, 5, 14, 23

6.1 - Introduction to Eigenvalues

6.1.2 Find the eigenvalues and the eigenvectors of these two matrices:

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right) \quad \text { and } \quad A+I=\left(\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right)
$$

$A+I$ has the \qquad eigenvectors as A. Its eigenvalues are \qquad by 1 .
6.1.3 Compute the eigenvalues and eigenvectors of A and A^{-1}. Check the trace!

$$
A=\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{cc}
-\frac{1}{2} & 1 \\
\frac{1}{2} & 0
\end{array}\right)
$$

A^{-1} has the \qquad eigenvectors as A. When A has eigenvalues λ_{1} and λ_{2}, its inverse has eigenvalues
6.1.5 Find the eigenvalues of A and B (easy for triangular matrices) and $A+B$:

$$
\begin{gathered}
A=\left(\begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \text { and } \\
A+B=\left(\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right)
\end{gathered}
$$

Eigenvalues of $A+B$ (are equal to)(are not equal to) eigenvalues of A plus eigenvalues of B.
6.1.16 The determinant of A equals the product $\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. Start with the polynomial $\operatorname{det}(A-\lambda I)$ separated into its n factors (always possible). Then set $\lambda=0$:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) \\
& \text { so } \operatorname{det}(A)=
\end{aligned}
$$

Check this rule in Example 1 where the Markov matrix has $\lambda=1$ and $\frac{1}{2}$.
6.1.17 The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { has } \quad \operatorname{det}(A-\lambda I)=\lambda^{2}-(a+d) \lambda+a d-b c=0
$$

The quadratic formula gives the eigenvalues $\lambda=(a+d+\sqrt{ }) / 2$ and $\lambda=$ \qquad . Their sum is \qquad . If A has $\lambda_{1}=3$ and $\lambda_{2}=4$ then $\operatorname{det}(A-\lambda I)=$ \qquad .

6.2 - Diagonalizing a Matrix

6.2.1 (a) Factor these two matrices into $A=S \Lambda S^{-1}$:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
1 & 1 \\
3 & 3
\end{array}\right)
$$

(b) If $A=S \Lambda S^{-1}$ then $A^{3}=()()()$ and $A^{-1}=()()()$.
6.2.2 If A has $\lambda_{1}=2$ with eigenvector $\mathbf{x}_{1}=\binom{1}{0}$ and $\lambda_{2}=5$ with $\mathbf{x}_{2}=$ $\binom{1}{1}$, use $S \Lambda S^{-1}$ to find A. No other matrix has the same λ 's and x's.
6.2.15 $A^{k}=S \Lambda^{k} S^{-1}$ approaches the zero matrix as $k \rightarrow \infty$ if and only if every λ has absolute value less than \qquad . Which of these matrices has $A^{k} \rightarrow 0$?

$$
A_{1}=\left(\begin{array}{cc}
.6 & .9 \\
.4 & .1
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{cc}
.6 & .9 \\
.1 & .6
\end{array}\right)
$$

6.2.16 (Recommended) Find Λ and S to diagonalize A_{1} in Problem 15. What is the limit of Λ^{k} as $k \rightarrow \infty$? What is the limit of $S \Lambda^{k} S^{-1}$? In the columns of this limiting matrix you see the
6.2.26 (Recommended) Suppose $A \mathbf{x}=\lambda \mathbf{x}$. If $\lambda=0$ then \mathbf{x} is in the nullspace. If $\lambda \neq 0$ then \mathbf{x} is in the column space. Those spaces have dimensions $(n-r)+r=n$. So why doesn't every square matrix have n linearly independent eigenvectors?

6.4-Symmetric Matrices

6.4.1 Write A as $M+N$, symmetric matrix plus skew-symmetric matrix:

$$
A=\left(\begin{array}{ccc}
1 & 2 & 4 \\
4 & 3 & 0 \\
8 & 6 & 5
\end{array}\right)=M+N \quad\left(M^{T}=M, N^{T}=-N\right)
$$

For any square matrix, $M=\frac{A+A^{T}}{2}$ and $N=$ \qquad add up to A.
6.4.3 Find the eigenvalues and the unit eigenvectors of

$$
A=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right)
$$

6.4.5 Find an orthogonal matrix Q that diagonalizes this symmetric matrix:

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & -2 \\
2 & -2 & 0
\end{array}\right)
$$

6.4.14 (Recommended) This matrix M is skew-symmetric and also

Then all its eigenvalues are pure imaginary and they also have $|\lambda|=$ 1. ($\|M \mathbf{x}\|=\|\mathbf{x}\|$ for every \mathbf{x} so $\|\lambda \mathbf{x}\|=\|\mathbf{x}\|$ for eigenvectors.) Find all four eigenvalues from the trace of M :
$M=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0\end{array}\right)$ can only have eigenvalues i or $-i$
6.4.23 (Recommended) To which of these classes do the matrices A and B belong: Invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad B=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Which of these factorizations are possible for A and $B: L U, Q R, S \Lambda S^{-1}, Q \Lambda Q^{T}$?

