Math 2270 - Assignment 10

Dylan Zwick

Fall 2012

Section 5.2 -1, 3, 11, 15, 16
Section 5.3-1, 6, 7, 8, 16
5.2 - Permutations and Cofactors
5.2.1 Compute the determinants of A, B, C from six terms. ${ }^{1}$ Are their rows independent?

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
3 & 2 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 4 & 4 \\
5 & 6 & 7
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) . \\
& |A|=1+12+18-4-6-9=12 \\
& |B|=28+40+72-24-56-60=0 \\
& |C|=0+0+0-0-0-1=-1
\end{aligned}
$$

${ }^{1}$ Using the big formula.
5.2.3 Show that $\operatorname{det}(A)=0$ regardless of the five nonzeros marked by x^{\prime} :

$$
A=\left(\begin{array}{lll}
x & x & x \\
0 & 0 & x \\
0 & 0 & x
\end{array}\right)
$$

What are the cofactors of row 1 ?
What is the rank of A ?
What are the 6 terms in the big formula for $\operatorname{det}(A)$?

$$
\begin{aligned}
& C_{11}=\left|\begin{array}{ll}
0 & x \\
0 & x
\end{array}\right|=0 \quad C_{12}=-\left|\begin{array}{ll}
0 & x \\
0 & x
\end{array}\right|=0 \\
& C_{13}=\left|\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right|=0
\end{aligned}
$$

So, $\operatorname{det}(A)=\times 0+\times 0+\times 0=0$,
$\operatorname{rank}(A)=2$ The first two columns are equal.

$$
\operatorname{det}(A)=0+0+0-0-0-0=0
$$

5.2.11 Find all the cofactors and put them into cofactor matrices C, D. Find $A C$ and $\operatorname{det}(B)$.

$$
\begin{gathered}
A=\left(\begin{array}{lll}
a & b \\
c & d
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 2 \\
4 & 5 \\
7 & 5 \\
6
\end{array}\right) . \\
C=\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right) \\
D=\left(\begin{array}{ccc}
0 & 42 & -35 \\
0 & -21 & 14 \\
-3 & 6 & -3
\end{array}\right) \\
A C=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b
\end{array}\right)=\left(\begin{array}{ll}
a d-b^{2} & a b-a c \\
c d-b d & a d-c^{2}
\end{array}\right) \\
\operatorname{det}(B)=7 C_{31}=7(-3)=-21
\end{gathered}
$$

5.2.15 The tridiagonal $1,1,1$ matrix of order n has determinant E_{n} :

$$
\begin{array}{cc}
E_{1}=|1| & E_{2}=\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right| \\
E_{3}=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right| & E_{4}=\left|\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right| .
\end{array}
$$

(a) By cofactors show that $E_{n}=E_{n-1}-E_{n-2}$.
(b) Starting from $E_{1}=1$ and $E_{2}=0$ find $E_{3}, E_{4}, \ldots, E_{8}$.
(c) By noticing how these numbers eventually repeat, find E_{100}.
a) If we do a cofactor expansion on row 1 we get

For the second determinant we do a cofaetor expansion down column 1 to get:

$$
E_{n}=E_{n-1}-E_{n-2}
$$

b) $E_{3}=-1, E_{4}=-1, E_{5}=0, E_{6}=1, E_{7}=1, E_{8}=0$
c) $E_{100}=E_{16(6)+4}=E_{4}=-1$
5.2.16 F_{n} is the determinant of the $1,1,-1$ tridiagonal matrix of order n :

$$
\begin{gathered}
F_{2}=\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right| \quad F_{3}=\left|\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right|=3 \\
F_{4}=\left|\begin{array}{cccc}
1 & -1 & \\
1 & 1 & -1 & \\
& 1 & 1 & -1 \\
& 1 & 1
\end{array}\right| \neq 4 .
\end{gathered}
$$

Expand in cofactors to show that $F_{n}=F_{n-1}+F_{n-2}$. These determirants are Fibonacci numbers $1,2,3,5,8,13, \ldots$. The sequence usually starts $1,1,2,3$ (with two 1 's) so our F_{n} is the usual F_{n+1}.
5.3 - Cramer's Rule, Inverses, and Volumes
5.3.1 Solve these linear equations by Cramer's rule $x_{j}=\frac{\operatorname{det}\left(B_{j}\right)}{\operatorname{det}(A)}$:
(a) $\begin{aligned} 2 x_{1}+5 x_{2} & =1 \\ x_{1}+4 x_{2} & =2\end{aligned}$
(b) $\begin{aligned} 2 x_{1}+x_{2} & =1 \\ x_{1}+2 x_{2}+x_{3} & =0 .\end{aligned}$
(b) $\begin{aligned} x_{1}+2 x_{2}+x_{3} & =0 \\ x_{2}+2 x_{3} & =0\end{aligned}$.
a)

$$
\begin{array}{cl}
A=\left(\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right) & |A|=8-5=3 \\
B_{1}=\left(\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right) & \left|B_{1}\right|=4-10=-6 \\
B_{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) & \left|B_{2}\right|=4-1=3 \\
x_{1}=-\frac{6}{3}=-2 \quad x_{2}=\frac{3}{3}=1
\end{array}
$$

$$
\begin{array}{lll}
\text { b) } A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) & |A|=8-2-2=4 \\
B_{1}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) & \left|B_{1}\right|=8 & x_{1}=\frac{3}{4} \\
B_{2}=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 2
\end{array}\right) & \left|B_{2}\right|=-2 & x_{2}=-\frac{1}{2} \\
B_{3}=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 0 \\
0 & 1 & 0
\end{array}\right) & \left|B_{3}\right|=1
\end{array}
$$

5.3.6 Find A^{-1} from the cofactor formula $C^{T} / \operatorname{det}(A)$. Use symmetry in part (b).
(a) $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 7 & 1\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$.

$$
\begin{aligned}
& \text { a) } \\
& c_{11}=3 \quad c_{12}=0 \quad c_{13}=0 \\
& c_{21}=-2 \quad c_{22}=1 \quad c_{23}=-7 \\
& c_{31}=0 \quad C_{32}=0 \quad C_{33}=3 \\
& C=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-2 & 1 & -7 \\
0 & 0 & 3
\end{array}\right) \quad C^{\top}=\left(\begin{array}{ccc}
3 & -2 & 0 \\
0 & 1 & 0 \\
0 & -7 & 3
\end{array}\right) \quad \operatorname{det}(A)=3 \\
& A^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
3 & -2 & 0 \\
0 & 1 & 0 \\
0 & -7 & 3
\end{array}\right) \\
& \text { b) } C_{11}=3 \quad c_{12}=2 \quad c_{11}=1 \\
& c=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right) \\
& c_{21}=2 \quad c_{22}=4 \quad c_{23}=2 \\
& c_{31}=1 \quad c_{32}=2 \quad c_{33}=3 \\
& \operatorname{det}(A)=8-2-2=4 \\
& C^{T}=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right) \\
& A^{-1}=\frac{1}{4}\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right)
\end{aligned}
$$

5.3.7 If all the cofactors are zero, how do you know that A has no inverse? If none of the cofactors are zero, is A sure to be invertible?

If all cofactors are 0, then $C^{\top}=0$, where C^{\top} is the zero matrix. If A had an inverse if would be $A^{-1}=\frac{C T}{\operatorname{det}(A)}=0$.
But, anything multiplied by the o matrix is 0 , not $I_{\text {. }}$

If none of the cofactors are 0 , A could still be singular.
Take

$$
\begin{array}{r}
A=\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right) \quad c_{11}=1, c_{12}=-2 \\
c_{21}=-2, c_{22}=4 \\
1 \\
\text { All non-zero, } \\
\text { bat A is not } \\
\text { invertible. }
\end{array}
$$

5.3.8 Find the cofactors of A and multiply $A C^{T}$ to find $\operatorname{det}(A)$:

$$
A=\left(\begin{array}{lll}
1 & 1 & 4 \\
1 & 2 & 2 \\
1 & 2 & 5
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ccc}
6 & -3 & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right)
$$

and $A C^{T}=$

If you change that 4 to 100 , why is $\operatorname{det}(A)$ unchanged?

$$
\begin{aligned}
& C_{21}=-(5-8)=+3 \quad C_{22}=5-4=1 \quad C_{23}=(2-1)=-1 \\
& C_{31}=2-8=-6 \quad C_{32}=(2-4)=+2 \quad C_{33}=2-1=1 \\
& C=\left(\begin{array}{ccc}
6 & -3 & 0 \\
+3 & 1 & -1 \\
-6+2 & 1
\end{array}\right) \quad C^{\top}=\left(\begin{array}{ccc}
6 & +3 & -6 \\
-3 & 1 & +2 \\
0 & -1 & 1
\end{array}\right) \\
& A C^{\top}=\left(\begin{array}{ccc}
1 & 1 & 4 \\
1 & 2 & 2 \\
1 & 2 & 5
\end{array}\right)\left(\begin{array}{cc}
6 & +3 \\
-3 & -6 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right) \\
& S_{0}, \operatorname{det}(A)=3
\end{aligned}
$$

Use a cofactor expansion along row 1:

$$
1(6)+1(-3)+\log _{10} 00(0)=3
$$

This can be any number, still multiplying by 0 .
5.3.16 (a) Find the area of the parallelogram with edges $\mathbf{v}=(3,2)$ and $\mathbf{w}=(1,4)$.
(b) Find the area of the triangle with sides \mathbf{v}, \mathbf{w}, and $\mathbf{v}+\mathbf{w}$. Draw it.
(c) Find the area of the triangle with sides \mathbf{v}, \mathbf{w}, and $\mathbf{w}-\mathbf{v}$. Draw it.
a)

$$
\text { Area }=
$$

$$
\left|\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right|=12-2=10
$$

b)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}\left|\begin{array}{ll}
3 \cdot & 2 \\
4 & 6
\end{array}\right| \\
& =\frac{1}{2}(10)=5 \\
\text { Area } & =\frac{1}{2}\left|\begin{array}{cc}
-2 & 2 \\
-3 & -2
\end{array}\right| \\
& =\frac{1}{2}(4-(-6)) \\
& =\frac{10}{2}=5
\end{aligned}
$$

