Math 2270 - Assignment 10

Dylan Zwick
Fall 2012

Section 5.2 -1, 3, 11, 15, 16
Section 5.3-1, 6, 7, 8, 16

5.2 - Permutations and Cofactors

5.2.1 Compute the determinants of A, B, C from six terms. ${ }^{1}$ Are their rows independent?

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
3 & 2 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 4 & 4 \\
5 & 6 & 7
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

[^0]5.2.3 Show that $\operatorname{det}(A)=0$ regardless of the five nonzeros marked by x^{\prime} s:
\[

A=\left($$
\begin{array}{lll}
x & x & x \\
0 & 0 & x \\
0 & 0 & x
\end{array}
$$\right)
\]

What are the cofactors of row 1 ?
What is the rank of A ?
What are the 6 terms in the big formula for $\operatorname{det}(A)$?
5.2.11 Find all the cofactors and put them into cofactor matrices C, D. Find $A C$ and $\operatorname{det}(B)$.

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 0 & 0
\end{array}\right)
$$

5.2.15 The tridiagonal $1,1,1$ matrix of order n has determinant E_{n} :

$$
\begin{array}{cc}
E_{1}=|1| & E_{2}=\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right| \\
E_{3}=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right| & E_{4}=\left|\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right|
\end{array}
$$

(a) By cofactors show that $E_{n}=E_{n-1}-E_{n-2}$.
(b) Starting from $E_{1}=1$ and $E_{2}=0$ find $E_{3}, E_{4}, \ldots, E_{8}$.
(c) By noticing how these numbers eventually repeat, find E_{100}.
5.2.16 F_{n} is the determinant of the $1,1,-1$ tridiagonal matrix of order n :

$$
\begin{gathered}
F_{2}=\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right| \quad F_{3}=\left|\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right|=3 \\
F_{4}=\left|\begin{array}{cccc}
1 & -1 & \\
1 & 1 & -1 & \\
& 1 & 1 & -1 \\
& 1 & 1
\end{array}\right| \neq 4 .
\end{gathered}
$$

Expand in cofactors to show that $F_{n}=F_{n-1}+F_{n-2}$. These determinants are Fibonacci numbers $1,2,3,5,8,13, \ldots$.. The sequence ususally starts $1,1,2,3$ (with two 1 's) so our F_{n} is the usual F_{n+1}.

5.3 - Cramer's Rule, Inverses, and Volumes

5.3.1 Solve these linear equations by Cramer's rule $x_{j}=\frac{\operatorname{det}\left(B_{j}\right)}{\operatorname{det}(A)}$:
(a) $\begin{gathered}2 x_{1}+5 x_{2}=1 \\ x_{1}+4 x_{2}=2\end{gathered}$
(b) $\begin{aligned} 2 x_{1}+x_{2} & =1 \\ x_{1}+2 x_{2}+x_{3} & =0 \\ x_{2}+2 x_{3} & =0\end{aligned}$.
5.3.6 Find A^{-1} from the cofactor formula $C^{T} / \operatorname{det}(A)$. Use symmetry in part (b).
(a) $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 7 & 1\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$.
5.3.7 If all the cofactors are zero, how do you know that A has no inverse? If none of the cofactors are zero, is A sure to be invertible?
5.3.8 Find the cofactors of A and multiply $A C^{T}$ to find $\operatorname{det}(A)$:

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 1 & 4 \\
1 & 2 & 2 \\
1 & 2 & 5
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ccc}
6 & -3 & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right) \\
\text { and } A C^{T}=
\end{gathered}
$$

If you change that 4 to 100 , why is $\operatorname{det}(A)$ unchanged?
5.3.16 (a) Find the area of the parallelogram with edges $\mathbf{v}=(3,2)$ and $\mathbf{w}=(1,4)$.
(b) Find the area of the triangle with sides \mathbf{v}, \mathbf{w}, and $\mathbf{v}+\mathbf{w}$. Draw it.
(c) Find the area of the triangle with sides \mathbf{v}, \mathbf{w}, and $\mathbf{w}-\mathbf{v}$. Draw it.

[^0]: ${ }^{1}$ Using the big formula.

