Math 2270 - Assignment 10

Dylan Zwick

Fall 2012

Section 5.2 - 1, 3, 11, 15, 16 **Section 5.3** - 1, 6, 7, 8, 16

5.2 - Permutations and Cofactors

5.2.1 Compute the determinants of *A*, *B*, *C* from six terms.¹ Are their rows independent?

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 4 & 4 \\ 5 & 6 & 7 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

¹Using the big formula.

5.2.3 Show that det(A) = 0 regardless of the five nonzeros marked by x's:

$$A = \left(\begin{array}{rrrr} x & x & x \\ 0 & 0 & x \\ 0 & 0 & x \end{array}\right)$$

What are the cofactors of row 1?

What is the rank of *A*?

What are the 6 terms in the big formula for det(A)?

5.2.11 Find all the cofactors and put them into cofactor matrices C, D. Find AC and det(B).

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \qquad B = \left(\begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 0 \end{array}\right).$$

5.2.15 The tridiagonal 1, 1, 1 matrix of order *n* has determinant E_n :

$$E_{1} = |1| \qquad E_{2} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$
$$E_{3} = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} \qquad E_{4} = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}.$$

- (a) By cofactors show that $E_n = E_{n-1} E_{n-2}$.
- (b) Starting from $E_1 = 1$ and $E_2 = 0$ find E_3, E_4, \ldots, E_8 .
- (c) By noticing how these numbers eventually repeat, find E_{100} .

5.2.16 F_n is the determinant of the 1, 1, -1 tridiagonal matrix of order n:

$$F_{2} = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \quad F_{3} = \begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 3$$
$$F_{4} = \begin{vmatrix} 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix} \neq 4.$$

Expand in cofactors to show that $F_n = F_{n-1} + F_{n-2}$. These determinants are *Fibonacci numbers* 1, 2, 3, 5, 8, 13, The sequence usually starts 1, 1, 2, 3 (with two 1's) so our F_n is the usual F_{n+1} .

5.3 - Cramer's Rule, Inverses, and Volumes

5.3.1 Solve these linear equations by Cramer's rule $x_j = \frac{det(B_j)}{det(A)}$:

(a) $2x_1 + 5x_2 = 1$ $x_1 + 4x_2 = 2$ (b) $2x_1 + x_2 = 1$ $x_1 + 2x_2 + x_3 = 0$ $x_2 + 2x_3 = 0$ **5.3.6** Find A^{-1} from the cofactor formula $C^T/det(A)$. Use symmetry in part (b).

(a)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 7 & 1 \end{pmatrix}$$

(b) $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$.

5.3.7 If all the cofactors are zero, how do you know that *A* has no inverse? If none of the cofactors are zero, is *A* sure to be invertible?

5.3.8 Find the cofactors of A and multiply AC^T to find det(A):

$$A = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 6 & -3 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$
$$\text{and} \quad AC^T =$$

If you change that 4 to 100, why is det(A) unchanged?

- **5.3.16 (a)** Find the area of the parallelogram with edges $\mathbf{v} = (3, 2)$ and $\mathbf{w} = (1, 4)$.
 - (b) Find the area of the triangle with sides \mathbf{v} , \mathbf{w} , and $\mathbf{v} + \mathbf{w}$. Draw it.
 - (c) Find the area of the triangle with sides \mathbf{v} , \mathbf{w} , and $\mathbf{w} \mathbf{v}$. Draw it.