Math 2270 - Assignment 1

Dylan Zwick

Fall 2012

Section 1.1 - 1,2,13,16,30
Section 1.2 - 1,2,3,27,29
Section 1.3 -1,2,6,8,13

1 Section 1.1 - Vectors and Linear Combinations

1.1.1 Describe geometrically (line, plane, or all of \mathbb{R}^{3}) all linear combinations of
(a) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, and $\left(\begin{array}{l}3 \\ 6 \\ 9\end{array}\right)$.
(b) $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)$.
(c) $\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$, and $\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$.
1.1.2 Draw $\mathbf{v}=\binom{4}{1}$ and $\mathbf{w}=\binom{-2}{2}$ and $\mathbf{v}+\mathbf{w}$ and $\mathbf{v}-\mathbf{w}$ in a single $x y$ plane.
1.1.13 (a) What is the sum V of the twelve vectors that go from the center of a clock to the hours 1:00, 2:00, ..., 12:00?
(b) If the 2:00 vector is removed, why do the 11 remaining vectors add to $8: 00$?
(c) What are the components of that 2:00 vector $\mathbf{v}=(\cos \theta, \sin \theta)$?
1.1.16 Mark the point $-\mathbf{v}+2 \mathbf{w}$ and any other combination $c \mathbf{v}+d \mathbf{w}$ with $c+d=1$. Draw the line of all combinations that have $c+d=1$.

1.1.30 The linear combinations of $\mathbf{v}=(a, b)$ and $\mathbf{w}=(c, d)$ fill the plane unless \qquad . Find four vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}$ with four components each so that their combinations $c \mathbf{u}+d \mathbf{v}+e \mathbf{w}+f \mathbf{z}$ produce all vectors ($b_{1}, b_{2}, b_{3}, b_{4}$) in four-dimensional space.

2 Section 1.2 - Lengths and Dot Products

1.2.1 Calculate the dot products $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$ and $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})$ and $\mathbf{w} \cdot \mathbf{v}$:

$$
\mathbf{u}=\binom{-.6}{.8}, \mathbf{v}=\binom{3}{4}, \mathbf{w}=\binom{8}{6}
$$

1.2.2 Compute the lengths $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$ and $\|\mathbf{w}\|$ of those vectors. Check the Schwarz inequalities $|\mathbf{u} \cdot \mathbf{v}| \leq \| \mathbf{u}| || | \mathbf{v}| |$ and $|\mathbf{v} \cdot \mathbf{w}| \leq\|\mathbf{v}|\|\mid \mathbf{w}\|$.
1.2.3 Find unit vectors in the directions of \mathbf{v} and \mathbf{w} in Problem 1, and the cosine of the angle θ. Choose vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ that make $0^{\circ}, 90^{\circ}$, and 180° angles with \mathbf{w}.
1.2.27 (Recommended) If $\|\mathbf{v}\|=5$ and $\|\mathbf{w}\|=3$, what are the smallest and largest values of $\|\mathbf{v}-\mathbf{w}\|$? What are the smallest and largest values of $\mathbf{v} \cdot \mathbf{w}$?
1.2.29 Pick any numbers that add to $x+y+z=0$. Find the angle between your vector $\mathbf{v}=(x, y, z)$ and the vector $\mathbf{w}=(z, x, y)$. Challenge question: Explain why $\mathbf{v} \cdot \mathbf{w} /\|\mathbf{v}\|\|\mathbf{w}\|$ is always $-\frac{1}{2}$.

3 Section 1.3-Matrices

1.3.1 Find the linear combinations $2 \mathbf{s}_{1}+3 \mathbf{s}_{2}+4 \mathbf{s}_{3}=\mathbf{b}$. Then write \mathbf{b} as a matrix-vector multiplication $S \mathbf{x}$. Compute the dot products (row of S). x :

$$
\mathbf{s}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \mathbf{s}_{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \mathbf{s}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text { go into the columns of } S
$$

1.3.2 Solve these equations $S \mathbf{y}=\mathbf{b}$ with $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}$ in the columns of S :

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
9
\end{array}\right)
$$

The sum of the first n odd numbers is \qquad .
1.3.6 Which values of c give dependent columns (combination equals zero)?

$$
\left(\begin{array}{lll}
1 & 3 & 5 \\
1 & 2 & 4 \\
1 & 1 & c
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & c \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{ccc}
c & c & c \\
2 & 1 & 5 \\
3 & 3 & 6
\end{array}\right)
$$

1.3.8 Moving to a 4 by 4 difference equation $A \mathbf{x}=\mathbf{b}$, find the four components $x_{1}, x_{2}, x_{3}, x_{4}$. Then write this solution as $\mathbf{x}=S \mathbf{b}$ to find the inverse matrix $S=A^{-1}$:

$$
A \mathbf{x}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)=\mathbf{b}
$$

1.3.13 The very last words of worked example 1.3 B say that the 5 by 5 centered difference matrix is not invertible. Write down the 5 equations $C \mathbf{x}=\mathbf{b}$. Find the combination of left sides that gives zero. What combination of $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ must be zero? (The 5 columns lie on a "4-dimensional hyperplane" in 5-dimensional space.)

