Math 1010 - Lecture 31 Notes

Dylan Zwick

Fall 2009

In this, our final lecture, we'll go over some more properties of logarithms, and then we'll work through some problems involving logarithms.

1 Properties of Logarithms

We saw in our last lecture that the properties of exponentials:

(a) $a^0 = 1$

(b)
$$a^1 = a$$

(c)
$$a^x = a^x$$

corresponded to the properties of logarithms:

- (a) $\log_a(1) = 0$
- (b) $\log_a(a) = 1$
- (c) $\log_a(a^x) = x$.

Well, similarly, the properties of exponentials:

(d)
$$a^{m}a^{n} = a^{m+n}$$

(e) $\frac{a^{m}}{a^{n}} = a^{m-n}$

(f) $(a^m)^n = a^{mn}$

correspond to the properties of logarithms:

- (d) $\log_a(uv) = \log_a(u) + \log_a(v)$
- (e) $\log_a\left(\frac{u}{v}\right) = \log_a(u) \log_a(v)$
- (f) $\log_a(u^n) = n \log_a(u)$.

Therefore, the six big properties of logarithms are:

- (a) $\log_a(1) = 0$
- (b) $\log_a(a) = 1$
- (c) $\log_a(a^x) = x$
- (d) $\log_a(uv) = \log_a(u) + \log_a(v)$
- (e) $\log_a\left(\frac{u}{v}\right) = \log_a(u) \log_a(v)$
- (f) $\log_a(u^n) = n \log_a(u)$.

Note that the first three can be derived from the last three, but they're so common and important that we single them out for notice.

Note that it is *not* in general possible to simplify $\log_a(u + v)$ and it is certainly *not* the case that this is equal to $\log_a(u) + \log_a(v)$. So, don't make this mistake!

2 Using the Properties

Examples

Use the properties of logarithms to evaluate the following.

1.
$$\log_5\left(\sqrt[3]{5}\right)$$

2.
$$\log_3(54) - \log_3(2)$$

3.
$$\log_4\left(\frac{3}{16}\right) + \log_4\left(\frac{1}{3}\right)$$

4.
$$\ln\left(\frac{e^3}{e^2}\right)$$

Use the properties of logarithms to *expand* the expressions.

1. $\log_3(11x)$

2.
$$\log_4[x^6(x+y)^2]$$

3.
$$\ln(\sqrt{x(x+2)})$$

Use the properties of logarithms to *contract* the expressions.

1.
$$\log_3(2) + \frac{1}{2}\log_3(y)$$

2.
$$2[\ln(x) - \ln(x+1)]$$

3.
$$\frac{1}{4}\log_6(x+1) - 5\log_6(x-4)$$

3 **Problems involving Logarithms**

1. If you invest \$1000 in a savings account that generates 2% interest per year, compounded annually, how long will it takes for your investment to quintuple (increase to fives times its original amount)? Express your answer as a logarithm, you don't need to calculate it.

2. Solve the exponential equation $5000 = 2500e^{0.09t}$ for *t* to determine the number of years for an investment of \$2500 to double in value when compounded continuously at the rate of 9%.

3. Use Newton's Law of Cooling to solve the following forensics problem. Newton's law of cooling states that:

$$kt = \ln\left(\frac{T-S}{T_0-S}\right)$$

where *T* is the temperature of a body (in degrees Fahrenheit), *t* is the number of hours elapsed, *S* is the temperature of the environment, and T_0 is the initial temperature of the body.

A corpse was discovered in a motel room at 10:00 P.M., and its temperature was $85^{\circ}F$. Three hours later, the temperature of the corpse was $78^{\circ}F$. The temperature of the motel room is a constant $65^{\circ}F$.

(a) What is the constant *k*?

(b) Find the time of death using the fact that the temperature of the corpse at the time of death was $98.6^{\circ}F$.

(c) What is the temperature of the corpse two hours after death?