ASSIGNMENT 8

DYLAN ZWICK'S MATH 1010 CLASS

5.4 Factoring by Grouping and Special Forms Write the number as a product of prime factors.

5.4.1: 6

5.4.5: 30

5.4.4: 12

5.4.8: 54

Find the greatest common factor of the expressions.

5.4.9: 16,24

5.4.15: $3x^2$, 12x

5.4.13: x^3, x^4

5.4.18: $9x^3y$, $24xy^2$

Factor out the greatest common monomial factor. (some of the polynomials have no common monomial factors.)

5.4.21: 4x + 4

5.4.28: $y^2 - 5y$

5.4.25: $24t^2 - 36$

5.4.31: $11u^2 + 9$

Factor a negative real number out of the polynomial and then write the polynomial factor in standard form.

5.4.41: 7 - 14x

Factor the expression by factoring out the common binomial factor.

5.4.55:
$$2y(y-4) + 5(y-4)$$

5.4.59:
$$2(7a+6) - 3a^2(7a+6)$$

5.4.64:
$$(3x+7)(2x-1)+(x-6)(2x-1)$$

Factor the polynomial by grouping.

5.4.65:
$$x^2 + 25x + x + 25$$

5.4.67:
$$y^2 - 6y + 2y - 12$$

5.4.69:
$$x^3 + 2x^2 + x + 2$$

5.4.71:
$$3a^3 - 12a^2 - 2a + 8$$

5.4.75:
$$5x^3 - 10x^2y + 7xy^2 - 14y^3$$

Factor the difference of two squares.

5.4.77:
$$x^2 - 9$$

5.4.79:
$$1 - a^2$$

5.4.80:
$$16 - b^2$$

5.4.93:
$$(x-1)^2 - 16$$

5.4.82:
$$9z^2 - 36$$

5.4.95:
$$81 - (z+5)^2$$

5.4.85:
$$4z^2 - y^2$$

Factor the sum or difference of cubes.

5.4.99:
$$x^3 - 8$$

5.4.103:
$$8t^3 - 27$$

Factor the polynomial completely.

5.4.111:
$$8 - 50x^2$$

5.4.115:
$$y^4 - 81$$

5.4.136: Chemical Reaction The rate of change of a chemical reaction is given by $kQx - kx^2$, where Q is the amount of the original substance, x is the amount of substance formed, and k is a constant of the proportionality. Factor this expression.

5.4.138: Farming A farmer has enough fencing to construct a rectanglular pig pen that encloses an area given by $32w - w^2$, where w is the width(in feet) of the pen. Use factoring to find the length of the pen in terms of w.

5.5 Factoring Trinomials

Factor the perfect square trinomial.

5.5.1:
$$x^2 + 4x + 4$$

5.5.10:
$$x^2 - 14xy + 49y^2$$

5.5.5:
$$25y^2 - 10y + 1$$

5.5.13:
$$5x^2 + 30x + 45$$

Find two real numbers b, or one real number c such that the expressions is a perfect square trinomial.

5.5.21:
$$x^2 + bx + 81$$

5.5.28:
$$z^2 - 20z + c$$

5.5.25:
$$x^2 + 8x + c$$

Factor the trinomial.

5.5.37:
$$x^2 + 6x + 5$$

5.5.42:
$$m^2 - 3m - 10$$

5.5.38:
$$x^2 + 7x + 10$$

5.5.44:
$$x^2 + 4x - 12$$

5.5.40:
$$x^2 - 10x + 24$$

5.5.45:
$$x^2 - 20x + 96$$

5.5.41:
$$y^2 + 7y - 30$$

5.5.49:
$$x^2 + 30xy + 216y^2$$

Factor the trinomial, if possible. (Note: Some of the trinomials may be prime.)

5.5.67:
$$6x^2 - 5x - 25$$

5.5.77:
$$6b^2 + 19b - 7$$

5.5.69:
$$10y^2 - 7y - 12$$

5.5.79:
$$-2x^2 - x + 6$$

5.5.70:
$$6x^2 - x - 15$$

5.5.85:
$$4w^2 - 3w + 8$$

5.5.75:
$$2t^2 - 7t - 4$$

5.5.87:
$$60y^3 + 35y^2 - 50y$$

Factor the trinomial by grouping.

5.5.93:
$$3x^2 + 10x + 8$$

5.5.96:
$$7x^2 - 13x - 2$$

Factor the expression completely.

5.5.99:
$$3x^3 - 3x$$

5.5.102:
$$16z^3 - 56z^2 + 49z$$

5.5.132: Number Problem Let n be an integer.

(a) Factor $8n^3 + 12n^2 - 2n - 3$ so as to verify that it represents the product of three consecutive odd integers.

(b) If n = 15, what are the three integers?

6.1 RATIONAL EXPRESSIONS AND FUNCTIONS

Find the domain of the rational function.

6.1.1:
$$f(x) = \frac{x^2 + 9}{4}$$

6.1.10:
$$h(x) = \frac{4x}{x^2 + 16}$$

6.1.3:
$$f(x) = \frac{4}{x-3}$$

6.1.15:
$$f(t) = \frac{5t}{t^2 - 16}$$

6.1.4:
$$g(x) = \frac{-2}{x-7}$$

6.1.17:
$$g(y) = \frac{y+5}{y^2-3y}$$

Evaluate the rational function as indicated, and simplify. If not possible, state the reason.

6.1.23:
$$f(x) = \frac{4x}{x+3}$$

(a)
$$f(1)$$

(c)
$$f(-3)$$

(b)
$$f(-2)$$

(d)
$$f(0)$$

6.1.27:
$$h(s) = \frac{s^2}{s^2 - s - 2}$$

(a)
$$h(10)$$

(c)
$$h(-1)$$

(b)
$$h(0)$$

(d)
$$h(2)$$

Describe the domain.

6.1.30: Cost The cost C in millions of dollars for the government to seize p% of an illegal drug as it enters the country is given by

$$C = \frac{528p}{100 - p}.$$

6.1.31: Inventory Cost The inventory cost I when x units of a product are ordered from a supplier is given by

$$I = \frac{0.25x + 200}{x}.$$

Simplify the rational expression.

6.1.43:
$$\frac{5x}{25}$$

6.1.60:
$$\frac{z^2 + 22z + 121}{3z + 33}$$

6.1.45:
$$\frac{12x^2}{12x}$$

6.1.65:
$$\frac{3x^2 - 7x - 20}{12 + x - x^2}$$

6.1.51:
$$\frac{x^2(x-8)}{x(x-8)}$$

6.1.71:
$$\frac{3xy^2}{xy^2+x}$$

6.1.52:
$$\frac{a^2b(b-3)}{b^3(b-3)^2}$$

6.1.73:
$$\frac{y^2 - 64x^2}{5(3y + 24x)}$$

6.1.55:
$$\frac{y^2 - 49}{2y - 14}$$

6.1.75:
$$\frac{5xy + 3x^2y^2}{xy^3}$$

6.1.58:
$$\frac{u^2 - 12u + 36}{u - 6}$$

6.1.78:
$$\frac{x^2 + 4xy}{x^2 - 16y^2}$$

- **6.1.87:** Average Cost A machine shop has a setup cost of \$2500 for the production of a new product. The cost of labor and material for producing each unit is \$9.25.
 - (a) Write the total cost C as a function of x, the number of units produced.
 - (b) Write the average cost per unit $\overline{C} = C/x$ as a function of x, the number of units produced.
 - (c) Determine the domain of the function in part (b).
- **6.1.88:** Average Cost A greeting card company has an initial investment of \$60,000. The cost of producing one dozen card is \$6.50.
 - (a) Write the total cost C as a function of x, the number of dozens of cards produced.
 - (b) Write the average cost per dozen $\overline{C} = C/x$ as a function of x, the number of dozens of cards produced.
 - (c) Determine the domain of the function in part (b).
 - (d) Find the value of $\overline{C}(11,000)$.