ASSIGNMENT 8

DYLAN ZWICK'S MATH 1010 CLASS

5.4 Factoring by Grouping and Special Forms

Write the number as a product of prime factors.
5.4.1: 6
5.4.4: 12
5.4.5: 30
5.4.8: 54

Find the greatest common factor of the expressions.
5.4.9: 16,24
5.4.15: $3 x^{2}, 12 x$
5.4.13: x^{3}, x^{4}
5.4.18: $9 x^{3} y, 24 x y^{2}$

Factor out the greatest common monomial factor.(some of the polynomials have no common monomial factors.)
5.4.21: $4 x+4$
5.4.28: $y^{2}-5 y$
5.4.25: $24 t^{2}-36$
5.4.31: $11 u^{2}+9$

Factor a negative real number out of the polynomial and then write the polynomial factor in standard form.
5.4.41: $7-14 x$

Factor the expression by factoring out the common binomial factor.
5.4.55: $2 y(y-4)+5(y-4)$
5.4.59: $2(7 a+6)-3 a^{2}(7 a+6)$
5.4.64: $(3 x+7)(2 x-1)+(x-6)(2 x-1)$

Factor the polynomial by grouping.
5.4.65: $x^{2}+25 x+x+25$
5.4.67: $y^{2}-6 y+2 y-12$
5.4.69: $x^{3}+2 x^{2}+x+2$
5.4.71: $3 a^{3}-12 a^{2}-2 a+8$
5.4.75: $5 x^{3}-10 x^{2} y+7 x y^{2}-14 y^{3}$

Factor the difference of two squares.
5.4.80: $16-b^{2}$
5.4.93: $(x-1)^{2}-16$
5.4.82: $9 z^{2}-36$
5.4.95: $81-(z+5)^{2}$
5.4.85: $4 z^{2}-y^{2}$

Factor the sum or difference of cubes.
5.4.99: $x^{3}-8$
5.4.103: $8 t^{3}-27$

Factor the polynomial completely.
5.4.111: $8-50 x^{2}$
5.4.115: $y^{4}-81$
5.4.136: Chemical Reaction The rate of change of a chemical reaction is given by $k Q x-k x^{2}$, where Q is the amount of the original substance, x is the amount of substance formed, and k is a constant of the proportionality. Factor this expression.
5.4.138: Farming A farmer has enough fencing to construct a rectanglular pig pen that encloses an area given by $32 w-w^{2}$, where w is the width(in feet) of the pen. Use factoring to find the length of the pen in terms of w.

5.5 Factoring Trinomials

Factor the perfect square trinomial.
5.5.1: $x^{2}+4 x+4$
5.5.10: $x^{2}-14 x y+49 y^{2}$
5.5.5: $25 y^{2}-10 y+1$
5.5.13: $5 x^{2}+30 x+45$

Find two real numbers b, or one real number c such that the expressions is a perfect square trinomial.
5.5.21: $x^{2}+b x+81$
5.5.28: $z^{2}-20 z+c$
5.5.25: $x^{2}+8 x+c$

Factor the trinomial.
5.5.37: $x^{2}+6 x+5$
5.5.42: $m^{2}-3 m-10$
5.5.38: $x^{2}+7 x+10$
5.5.44: $x^{2}+4 x-12$
5.5.40: $x^{2}-10 x+24$
5.5.45: $x^{2}-20 x+96$
5.5.41: $y^{2}+7 y-30$
5.5.49: $x^{2}+30 x y+216 y^{2}$

Factor the trinomial, if possible.(Note: Some of the trinomials may be prime.)
5.5.67: $6 x^{2}-5 x-25$
5.5.77: $6 b^{2}+19 b-7$
5.5.69: $10 y^{2}-7 y-12$
5.5.70: $6 x^{2}-x-15$
5.5.75: $2 t^{2}-7 t-4$
5.5.79: $-2 x^{2}-x+6$
5.5.85: $4 w^{2}-3 w+8$
5.5.87: $60 y^{3}+35 y^{2}-50 y$

Factor the trinomial by grouping.
5.5.93: $3 x^{2}+10 x+8$
5.5.96: $7 x^{2}-13 x-2$

Factor the expression completely.
5.5.99: $3 x^{3}-3 x$
5.5.102: $16 z^{3}-56 z^{2}+49 z$
5.5.132: Number Problem Let n be an integer.
(a) Factor $8 n^{3}+12 n^{2}-2 n-3$ so as to verify that it represents the product of three consecutive odd integers.
(b) If $n=15$, what are the three integers?

6.1 Rational Expressions and Functions

Find the domain of the rational function.
6.1.1: $f(x)=\frac{x^{2}+9}{4}$
6.1.10: $h(x)=\frac{4 x}{x^{2}+16}$
6.1.3: $f(x)=\frac{4}{x-3}$
6.1.15: $f(t)=\frac{5 t}{t^{2}-16}$
6.1.4: $g(x)=\frac{-2}{x-7}$
6.1.17: $g(y)=\frac{y+5}{y^{2}-3 y}$

Evaluate the rational function as indicated, and simplify.If not possible, state the reason.
6.1.23: $f(x)=\frac{4 x}{x+3}$
(a) $f(1)$
(c) $f(-3)$
(b) $f(-2)$
(d) $f(0)$
6.1.27: $h(s)=\frac{s^{2}}{s^{2}-s-2}$
(a) $h(10)$
(c) $h(-1)$
(b) $h(0)$
(d) $h(2)$

Describe the domain.
6.1.30: Cost The cost C in millions of dollars for the goverment to seize $p \%$ of an illegal drug as it enters the country is given by

$$
C=\frac{528 p}{100-p}
$$

6.1.31: Inventory Cost The inventory cost I when x units of a product are ordered from a supplier is given by

$$
I=\frac{0.25 x+200}{x} .
$$

Simplify the rational expression.
6.1.43: $\frac{5 x}{25}$
6.1.60: $\frac{z^{2}+22 z+121}{3 z+33}$
6.1.45: $\frac{12 x^{2}}{12 x}$
6.1.65: $\frac{3 x^{2}-7 x-20}{12+x-x^{2}}$
6.1.51: $\frac{x^{2}(x-8)}{x(x-8)}$
6.1.71: $\frac{3 x y^{2}}{x y^{2}+x}$
6.1.52: $\frac{a^{2} b(b-3)}{b^{3}(b-3)^{2}}$
6.1.73: $\frac{y^{2}-64 x^{2}}{5(3 y+24 x)}$
6.1.55: $\frac{y^{2}-49}{2 y-14}$
6.1.75: $\frac{5 x y+3 x^{2} y^{2}}{x y^{3}}$
6.1.58: $\frac{u^{2}-12 u+36}{u-6}$
6.1.78: $\frac{x^{2}+4 x y}{x^{2}-16 y^{2}}$
6.1.87: Average Cost A machine shop has a setup cost of $\$ 2500$ for the production of a new product. The cost of labor and material for producing each unit is $\$ 9.25$.
(a) Write the total cost C as a function of x, the number of units produced.
(b) Write the average cost per unit $\bar{C}=C / x$ as a function of x, the number of units produced.
(c) Determine the domain of the function in part (b).
6.1.88: Average Cost A greeting card company has an initial investement of $\$ 60,000$. The cost of producing one dozen card is $\$ 6.50$.
(a) Write the total cost C as a function of x, the number of dozens of cards produced.
(b) Write the average cost per dozen $\bar{C}=C / x$ as a function of x, the number of dozens of cards produced.
(c) Determine the domain of the funciton in part (b).
(d) Find the value of $\bar{C}(11,000)$.

