ASSIGNMENT 2

DYLAN ZWICK'S MATH 1010 CLASS

Section 1.4 - Algebraic Expressions

Identify the terms and coefficients of the algebraic expression:
1.4.1: $10 x+5$
$10 x, 5 ; 10,5$ (terms;coefficients)
1.4.4: $-16 t^{2}+48$
$-16 t^{2}, 48 ;-16,48$
1.4.5: $-3 y^{2}+2 y-8$

$$
-3 y^{2}, 2 y,-8 ;-3,2,-8
$$

1.4.8: $25 z^{3}-4.8 z^{2}$ $25 z^{3},-4.8 z^{2} ; 25,-4.8$
1.4.11: $x y-5 x^{2} y+2 y^{2}$ $x y,-5 x^{2} y, 2 y^{2} ; 1,-5,2$

Identify the property of algebra illustrated by the statement:
1.4.15: $4-3 x=-3 x+4$

Commutative Property of Addition
1.4.19: $(5-2) x=5 x-2 x$

Distributive Property

Use the indicated property to rewrite the expression:
1.4.22: Distributive Property

$$
6 x+6=6(x+1)
$$

Simplify the expressions by combining like terms:
1.4.25: $3 x+4 x$
$7 x$
1.4.29: $7 x-11 x$
$-4 x$
1.4.33: $3 x-2 y+5 x+20 y$
$8 x+18 y$
1.4.36: $9 y+y^{2}-6 y$
$y^{2}+3 y$
1.4.39: $x^{2}+2 x y-2 x^{2}+x y+y$ $-x^{2}+3 x y+y$

Use the Distribution Property to simplify the expressions:
1.4.41: $4\left(2 x^{2}+x-3\right)$ $8 x^{2}+4 x-12$
1.4.42: $8\left(z^{3}-4 z^{2}+2\right)$
$8 z^{3}-32 z^{2}+16$
1.4.46: $-\left(-5 t^{2}+8 t-10\right)$

$$
5 t^{2}-8 t+10
$$

1.4.49: $3 x(17-4 x)$ $51 x-12 x^{2}$

Simplify the expression:
1.4.53: $10(x-3)+2 x-5$ $12 x-35$
1.4.58: $7 x-(2 x+5)$

$$
5 x-5
$$

1.4.62: $x\left(x^{2}-5\right)-4(4-x)$ $x^{3}-x-16$

```
1.4.65: \(9 a-[7-5(7 a-3)]\)
\(44 a-22\)
```

1.4.69: $8 x+3 x[10-4(3-x)]$
$12 x^{2}+2 x$
1.4.72: $5\left[3(z+2)-\left(z^{2}+z-2\right)\right]$

$$
-5 z^{2}+10 z+40
$$

Evaluate the expression for the specified values of the variable(s). If not possible, state the reason:
1.4.73: $5-3 x$
(a) $x=\frac{2}{3}, \quad 3$
(b) $x=5, \quad-10$
1.4.75: $10-4 x^{2}$
(a) $x=-1, \quad 6$
(b) $x=\frac{1}{2}, \quad 9$
1.4.79: $\frac{1}{x^{2}}+3$
(a) $x=0, \quad$ Not possible; undefined
(b) $x=3, \quad \frac{28}{9}$
1.4.81: $3 x+2 y$
(a) $x=1, y=5, \quad 13$
(b) $x=-6, y=-9, \quad-36$
1.4.84: $y^{2}+x y-x^{2}$
(a) $x=5, y=2, \quad-11$
(b) $x=-3, y=3, \quad-9$
1.4.85: $\frac{x}{y^{2}-x}$
(a) $x=4, y=2, \quad$ Not possible, undefined
(b) $x=3, y=3, \quad \frac{1}{2}$
1.4.88: $\left|x^{2}-y\right|$
(a) $x=0, y=-2, \quad 2$
(b) $x=3, y=-15, \quad 24$

Evaluate the expression $0.01 p+0.05 n+0.10 d+0.25 q$ to find the value of the given number of pennies p, nickels n, dimes d, and quarters q :
1.4.97: 43 pennies, 27 nickels, 17 dimes, 15 quarters $\$ 7.23$

Section 1.5 - Constructing Algebraic Expressions

Translate the verbal phrase into an algebraic expression:
1.5.1: The sum of 23 and a number n $23+n$
1.5.5: Six less than a number n
$n-6$
1.5.7: Four times a number n minus 10
$4 n-10$
1.5.12: The ratio of y and 3
$\frac{y}{3}$
1.5.16: The number u is tripled and the product is increased by 250 $3 u+250$
1.5.19: The sum of a number and 5 , divided by 10

$$
\frac{n+5}{10}
$$

Write a verbal description of the algebraic expression without using the variable:
1.5.25: $t-2$

A number decreased by 2
1.5.28: $2 y+3$

Three more than the product of a number and 2
1.5.30: $7 y-4$

Four less than seven times a number
1.5.33: $\frac{4}{5} x$

Four-fifths of a number
1.5.37: $\frac{x+10}{3}$

The sum of a number and ten, divided by 3

Write an algebraic expression that represents the specified quantity in the verbal statement, and simplify if possible:
1.5.41: The amount of money (in dollars) represented by n quarters $0.25 n$
1.5.45: The amount of money (in cents) represented by m nickels and n dimes
$5 m+10 n$
1.5.47: The distance traveled in t hours at an average speed of 55 miles per hour
$55 t$
1.5.50: The average rate of speed when travelling 320 miles in t hours
$\frac{320}{t}$
1.5.51: The amount of antifreeze in a cooling system containg y gallons of coolant that is 45% antifreeze
$0.45 y$
1.5.55: The sale price of a coat that has a list price of L dollars if it is a " 20% off" sale
$L-0.20 L=0.80 L$
1.5.57: The total hourly wage for an employee when the base pay is $\$ 8.25$ per hour plus 60 cents for each of q unit produced per hour
$8.25+0.60 q$
1.5.59: The sum of a number n and five times the number $n+5 n=6 n$
1.5.62: The sum of three consecutive even integers, the first of which is $2 n$
$2 n+(2 n+2)+(2 n+4)=6 n+6$

Section 2.1 - Linear Equations

Determine whether each value of the variable is a solution of the equation:
2.1.1: $3 x-7=2$
(a) $x=0$

Not a solution
(b) $x=3$

Solution
2.1.2: $5 x+9=4$
(a) $x=-1$

Solution
(b) $x=2$

Not a solution
2.1.4: $10 x-3=7 x$
(a) $x=0$

Not a solution
(b) $x=-1$

Not a solution

Identify the equation as a conditional equation, an identity, or an equation with no solution:
2.1.7: $6(x+3)=6 x+3$

No solution
2.1.9: $\frac{2}{3} x+4=\frac{1}{3} x+12$

Conditional
Determine whether the two equations are equivalent. Explain your reasoning;
2.1.13: $3 x=10,4 x=x+10$

Equivalent
2.1.15: $x+5=12,2 x+15=24$

Not equivalent
2.1.17: $3(4-2 t)=5,12-6 t=5$

Equivalent
2.1.20: $6-5 x=-4, x=-4$

Not equivalent

Solve the equation. If there is exactly one solution, check your answer. If not, describe the solution:
2.1.23: $3 x-12=0$

4
2.1.25: $6 x+4=0$
$-\frac{2}{3}$
2.1.29: $4 y-3=4 y$

No Solution; $-3 \neq 0$
2.1.35: $3 x-1=2 x+14$

15
2.1.37: $8(x-8)=24$

11
2.1.45: $7(x+6)=3(2 x+14)+x$

Infinitely many;both sides of the equation equal $7 x+42$
2.1.47: $t-\frac{2}{5}=\frac{3}{2}$

$$
t=19 / 10
$$

2.1.50: $\frac{t}{6}+\frac{t}{8}=1$

$$
t=24 / 7
$$

2.1.53: $0.3 x+1.5=8.4$

23

Solve the problems:
2.1.59: Number Problem The sum of two consecutive integer is 251 . Find the integers.
Let the two integers be n and $n+1$, then $n+(n+1)=251$ we have $2 n+1=251$, or $n=125$. so the integers are 125 and 126 .
2.1.63: Work Rate Two people can complete a task in t hours, where t must satisfy the equation $\frac{t}{10}+\frac{t}{15}=1$.Find the required time t.
$t=6$
2.1.71: True or False? Multiplying each side of an equation by zero yields an equivalent equation. Justify your answer. False, because this does not follow the Multiplication Property of Equality.

