ASSIGNMENT 1

DYLAN ZWICK'S MATH 1010 CLASS

1. Section 1.1 - The Real Number System

Determing which of the real numbers in the set are:
(1) natural numbers,
(2) integers,
(3) rational numbers,
(4) irrational numbers.
1.1.1: $-\left\{-6,-\sqrt{6},-\frac{4}{3}, 0, \frac{5}{8}, \sqrt{2}, 2, \pi, 6\right\}$.

Natural numbers - $\{2,6\}$
Integers - $\{-6,0,2,6\}$
Rational numbers $-\left\{-6,-\frac{4}{3}, 0, \frac{5}{8}, 2,6\right\}$
Irrational numbers - $\{-\sqrt{6}, \sqrt{2}, \pi\}$
1.1.3: $-\left\{-4.2, \sqrt{4},-\frac{1}{9}, 0, \frac{3}{11}, \sqrt{11}, 5 . \overline{5}, 5.543\right\}$.

Natural numbers - $\{\sqrt{4}\}$
Integers - $\{\sqrt{4}, 0\}$
Rational numbers - $\left\{-4.2,-\frac{1}{9}, 0, \frac{3}{11}, 5 . \overline{5}, 5.543\right\}$
Irrational numbers - $\{\sqrt{11}\}$
For the next two problems use an overbar symbol to rewrite the decimal using the smallest number of digits possible.
1.1.7: - 2.121212...
$2 . \overline{12}$

[^0]1.1.8: - $0.436436436 \ldots$
$0 . \overline{436}$
1.1.11: - List all odd integers between π and 10 .
$$
5,7,9
$$
1.1.13: Plot the real numbers in the set $\left\{3, \frac{5}{2},-\frac{7}{2},-5.2\right\}$ on the real number line.

In the following exercises, place the correct inequality symbol between the pair of numbers.
1.1.19: $\frac{4}{5}<1$
1.1.22: $9>-1$
1.1.23: $-5<-2$
1.1.26: $\frac{3}{2}<\frac{5}{2}$

In the following exercises, find the distance between the pair of real numbers.
1.1.29: 4 and 10

6
1.1.32: -54 and 32

86
1.1.33: 18 and -32

50
1.1.36: 0 and 125

125
1.1.39: -6 and -9

3
1.1.40: -12 and -7

5

In the following exercises, evaluate the given expression.
1.1.42: |62|

62
1.1.43: $|-225|$

225
1.1.48: $-|-25|$
-25
1.1.51: $-|3.5|$
-3.5
1.1.53: $|-\pi|$
π
1.1.54: $-|\pi|$
$-\pi$

In the following exercises, place the correct symbol $(<,>$, or $=$) between the pair of real numbers.
1.1.55: $|-6|>|2|$
1.1.58: $|150|<|-310|$
1.1.59: $|-1.8|=|1.8|$
1.1.62: $-\left|-\frac{7}{3}\right|<-\left|\frac{1}{3}\right|$

In the following exercises, write the statement using inequality notation.
1.1.83: x is negative.

$$
x<0
$$

1.1.85: u is at least 16 .

$$
u \geq 16
$$

1.1.91: Find the two possible values of a given $|a|=4$.

$$
a= \pm 4
$$

2. Section 1.2 - Operations with Real Numbers Evaluate the expressions.
1.2.1: $13+32$

45
1.2.2: $16+84$

100
1.2.4: $-5+9$

4
1.2.6: $-5.1+0.9$
-4.2
1.2.9: $12.6+(-38.5)$
-25.9
1.2.12: $-3-17$
-20
1.2.15: $4-(-11)+9$

24
1.2.17: $5.3-2.2-6.9$
-3.8
1.2.20: $6+26-17+(-10)$

5
1.2.23: $\frac{3}{4}-\frac{1}{4}$
$\frac{1}{2}$
1.2.26: $\frac{6}{7}+\left(-\frac{3}{7}\right)$
$\frac{3}{7}$
1.2.31: $10 \frac{5}{8}-6 \frac{1}{4}$
$\frac{35}{8}$
1.2.35: $-(-11.325)+|34.625|$
45.95
1.2.37: $-\left|-6 \frac{7}{8}\right|-8 \frac{1}{4}$

$$
-\frac{121}{8}
$$

1.2.42: Write the expression $\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}$ as a multiplication problem.

$$
4 \times \frac{2}{3}
$$

In the following exercises find the requested product.
1.2.45: $5(-6)$
-30
1.2.48: $(-4)(-7)$

28
1.2.51: $(-1)(12)(-3)$

36
1.2.54: $\left(-\frac{4}{7}\right)\left(-\frac{4}{5}\right)$
$\frac{16}{35}$
1.2.55: $-\frac{3}{2}\left(\frac{8}{5}\right)$

$$
-\frac{12}{5}
$$

1.2.58: $\frac{1}{3}\left(\frac{2}{3}\right)$ $\frac{2}{9}$
1.2.61: $\frac{1}{3}\left(-\frac{3}{4}\right)(2)$

$$
-\frac{1}{2}
$$

In the following exercises, find the reciprocal
1.2.63: 6
$\frac{1}{6}$
1.2.66: $\frac{9}{5}$
$\frac{5}{9}$
1.2.68: $-\frac{2}{13}$
$-\frac{13}{2}$

In the following exercises, evaluate the given expression.
1.2.70: $-\frac{30}{-15}$

2
1.2.71: $-48 \div 16$
-3
1.2.76: $-\frac{11}{12} \div \frac{5}{24}$

$$
-\frac{22}{5}
$$

1.2.79: $-4 \frac{1}{4} \div-5 \frac{5}{8}$
$\frac{34}{45}$
1.2.81: $4 \frac{1}{8} \div 4 \frac{1}{2}$
$\frac{11}{12}$
1.2.87: Write the expression $-(7 \cdot 7 \cdot 7)$ using exponential notation. $-\left(7^{3}\right)$

In the following problems evaluate the given exponential expression.
1.2.91: $(-2)^{4}$

16
1.2.96: $\left(\frac{2}{3}\right)^{4}$
$\frac{16}{81}$
In the following exercises, evaluate the given expression.
1.2.105: $24-5 \cdot 2^{2}$

4
1.2.109: $14-2(8-4)$

6
1.2.112: $72-8\left(6^{2} \div 9\right)$

40
1.2.115: $5^{3}+|-14+4|$

135
1.2.119: $\frac{4^{2}-5}{11}-7$
-6
1.2.121: $\frac{6 \cdot 2^{2}-12}{3^{2}+3}$

1
1.2.122: $\frac{7^{2}-2(11)}{5^{2}+8(-2)}$

3
1.2.134: Profit The midyear financial statement of a clothing company showed a profit of $\$ 1,345,298.55$. At the close of the year, the financial statement showed a profit for the year of $\$ 867,132.87$. Find the profit (or loss) of the company for the second 6 months of the year.
$-\$ 478,165.68$
1.2.138: (a): You save $\$ 60$ per month for 30 years. How much money has been set aside during the 30 years?
$\$ 60 \times 12 \times 30=\$ 21,600$
(b): If the money in part (a) is deposited in a savings account earning 3% interest compounded monthly, the total amount in the account after 30 years wil be:

$$
60\left[\left(1+\frac{0.03}{12}\right)^{360}-1\right]\left(1+\frac{12}{0.03}\right)
$$

Use a calculator to determine this amount.
$\$ 35,051.62$
(c): How much of the amount in part (b) is earnings from interest?
$\$ 13.451 .62$
3. Section 1.3 - Properties of Real Numbers

In the following exercises identify the property of real numbers illustrated by the statement.
1.3.1: $18-18=0$

Additive Inverse Property
1.3.5: $13+12=12+13$

Commutative Property of Addition
1.3.12: $1 \cdot 9 k=9 k$

Multiplicative Identity Property

In the following exercises complete the statement using the specified property of real numbers.
1.3.21: Commutative Property of Multiplication: $15(-3)=(-3) 15$
1.3.24: Distributive Property: $(8-y)(4)=8 \cdot 4-y \cdot 4$

In the following exercises give (a) the additive inverse and (b) the multiplicative inverse of the quantity.
1.3.33: $\frac{1}{2}$

Additive Inverse $=-\frac{1}{2}$
Multiplicative Inverse $=2$
1.3.37: $6 z, z \neq 0$

Additive Inverse $=-6 z$
Multiplicative Inverse $=\frac{1}{6 z}$
1.3.40: $y-7, y \neq 7$.

Additive Inverse $=-(y-7)=7-y$
Multiplicative Inverse $=\frac{1}{y-7}$

In the following exercises rewrite the expression using the Distributive Property.
1.3.45: $20(2+5)$

$$
20 \cdot 2+20 \cdot 5
$$

1.3.49: $-6(2 y-5)$

$$
-6(2 y)+(-6)(-5)=-12 y+30
$$

1.3.50: $-4(10-b)$

$$
-4 \cdot 10+(-4)(-b)=-40+4 b
$$

1.3.65: Identify the property of real numbers that justifies each step.

$$
\left.\left.\begin{array}{c}
2 x-5=6
\end{array} \begin{array}{c}
\text { Original Equation } \\
(2 x-5)+5=6+5
\end{array} \begin{array}{c}
\text { Addition Property of Equality } \\
2 x+(-5+5)=11 \\
2 x+0=11 \\
\text { Associative Property of Addition } \\
\text { Additive Inverse Property }
\end{array}\right] \begin{array}{cc}
\text { Additive Identity Property }
\end{array}\right] \begin{array}{cc}
1 \\
\frac{1}{2}(2 x)=\frac{1}{2}(11) & \text { Multiplication Property of Equality } \\
\left(\frac{1}{2} \cdot 2\right) x=\frac{11}{2} & \text { Associative Property of Multiplication } \\
1 \cdot x=\frac{11}{2} & \text { Multiplicative Inverse Property } \\
x=\frac{11}{2} & \text { Multiplicative Identity Property }
\end{array}
$$

[^0]: Date: Due Friday, September 4th.

