ASSIGNMENT 15

DYLAN ZWICK'S MATH

Section 9.4

In Exercises 1-24, use properties of logarithms to evaluate the expression without a calculator(If not possible, state the reason)
9.4.1: $\log _{12} 12^{3}=3$
9.4.2: $\log _{3} 81=4$
9.4.3: $\log _{4}\left(\frac{1}{16}\right)^{3}=-6$
9.4.5: $\log _{5} \sqrt[3]{5}=\frac{1}{3}$
9.4.6: $\ln \sqrt{e}=\frac{1}{2}$
9.4.7: $\ln 14^{0}=0$
9.4.10: $\ln e^{7}=7$
9.4.11: $\log _{4} 8+\log _{4} 2=2$
9.4.12: $\log _{6} 2+\log _{6} 3=1$
9.4.13: $\log _{8} 4+\log _{8} 16=2$
9.4.15: $\log _{3} 54-\log _{3} 2=3$
9.4.16: $\log _{5} 50-\log _{5} 2=2$
9.4.18: $\log _{3} 324-\log _{3} 4=4$
9.4.21: $\ln e^{8}+\ln e^{4}=12$
9.4.25: Use $\log _{4} 2=0.500$ to approximate $\log _{4} 8 \approx 1.5000$

In Exercises 33,35, use $\ln 3 \approx 1.0986, \ln 5 \approx 1.6094$ to approximate the expression.
9.4.33: $\ln 9 \approx 2.1942$
9.4.35: $\ln \frac{5}{3} \approx 0.5108$

In Exercises 41,45, use the properties of logarithms to verify the statement.
9.4.41: $-3 \log _{4} 2=\log _{4} \frac{1}{8}$
9.4.45: $-3 \ln \frac{1}{7}=\ln 56-\ln 8$

In Exercises 47-74, use the properties of logarithms to expand the expression.
9.4.47: $\log _{3} 11 x=\log _{3} 11+\log _{3} x$
9.4.49: $\ln 3 y=\ln 3+\ln y$
9.4.50: $\ln 5 x=\ln 5+\ln x$
9.4.52: $\log _{3} x^{3}=3 \log _{3} x$
9.4.53: $\log _{4} x^{-3}=-3 \log _{4} x$
9.4.55: $\log _{4} \sqrt{3 x}=\frac{1}{2}\left(\log _{4} 3+\log _{4} x\right)$
9.4.57: $\log _{2} \frac{z}{17}=\log _{2} z-\log _{2} 17$
9.4.60: $\ln \frac{\sqrt{x}}{x+9}=\frac{1}{2}(\ln x+\ln (x+9)$
9.4.63: $\log _{4}\left[x^{6}(x+7)^{2}\right]=6 \log _{4} x+2 \log _{4}(x+7)$
9.4.67: $\ln \sqrt{x(x+2)}=\frac{1}{2}(\ln x+\ln (x+2)$
9.4.71: $\ln \sqrt[3]{\frac{x^{2}}{x+1}}=\frac{1}{3}[2 \ln x-\ln (x+1)]$
9.4.74: $\log _{5} \frac{x^{2} y^{5}}{z^{7}}=2 \log _{5} x+5 \log _{5} y-7 \log _{5} z$

In Exercises 75-100, use the properties of logarithms to condense the expression.
9.4.75: $\log _{12} x-\log _{12} 3=\log _{12} \frac{x}{3}$
9.4.78: $\log _{5} 2 x+\log _{5} 3 y=\log _{5} 6 x y$
9.4.81: $4 \ln b=\ln b^{4}$
9.4.83: $-2 \log _{5} 2 x=\log _{5} \frac{1}{4 x^{2}}$
9.4.88: $\ln 6-3 \ln z=\ln \frac{6}{z^{3}}$
9.4.90: $4 \ln 2+2 \ln x-\frac{1}{2} \ln y=\ln \frac{16 x^{2}}{\sqrt{y}}$
9.4.93: $2[\ln x-\ln (x+1)]=\ln \left(\frac{x}{x+1}\right)^{2}$
9.4.96: $5 \log _{3} x+\log _{3}(x-6)=\log _{3} x^{5}(x-6)$
9.4.100: $2 \log _{5}(x+y)+3 \log _{5} w=\log _{5}(x+y)^{2} w^{3}$
9.4.105: Simplify $\log _{5} \sqrt{50}=1+\frac{1}{2} \log _{5} 2$
9.4.78: The relationship between the number of decibels B and the intensity of a sound I in watts per centimeter squared is given by $B=10 \log _{10} \frac{I}{10^{-16}}$. Use properties of logarithms to write the formula in simpler form, and determine the number of decibels of a thunderclap with and intensity of 10^{-3} watt per centimeter squared. $B=10\left(\log _{10} I+16\right)$, 130 decibels

Section 9.5

In Exercises 1,3, determine whether each value of x is a solution of the equation.
9.5.1: $3^{2 x-5}=27,(a) x=1 N \quad(b) x=4 Y$
9.5.3: $e^{x+5}=45,(a) x=-5+\ln 45 Y \quad(b) x \approx-2.1933 N$

In Exercises 7-34, solve the equation.
9.5.7: $7^{x}=7^{3}, x=3$
9.5.8: $4^{x}=4^{6} x=6$
9.5.10: $e^{x+3}=e^{8}, x=5$
9.5.13: $6^{2 x}=36, x=3$
9.5.15: $3^{2-x}=81, x=-2$
9.5.17: $5^{x}=\frac{1}{125}, x=-3$
9.5.20: $3^{x+2}=\frac{1}{27}, x=-5$
9.5.21: $4^{x+3}=32^{x}, x=\frac{3}{4}$
9.5.22: $9^{x-2}=243^{x+1}, x=-3$
9.5.23: $\ln 5 x=\ln 22, x=\frac{22}{5}$
9.5.26: $\log _{5} 2 x=\log _{5} 36, x=18$
9.5.29: $\log _{2}(x+3)=\log _{2} 7, x=4$
9.5.30: $\log _{4}(x-8)=\log _{4}(-4)$, nosolution
9.5.31: $\log _{5}(2 x-3)=\log _{5}(4 x-5)$, nosol.
9.5.35: Simplify $\ln e^{2 x-1}=2 x-1$

In Exercises 39-118, solve the exponential (log) equation. (Round your answer to two decimal places.)
9.5.39: $3^{x}=91, x \approx 4.11$
9.5.40: $4^{x}=40, x \approx 2.66$
9.5.42: $2^{x}=3.6,, x \approx 1.85$
9.5.45: $7^{3 y}=126,, x \approx 0.83$
9.5.47: $3^{2-x}=8,, x \approx 0.11$
9.5.50: $12^{x-1}=324,, x \approx 3.33$
9.5.51: $4 e^{-x}=24,, x \approx-1.79$
9.5.53: $\frac{1}{4} e^{x}=5,, x \approx 3.00$
9.5.56: $4 e^{-3 x}=6,, x \approx-0.14$
9.5.58: $32(1.5)^{x}=640,, x \approx 7.39$
9.5.61: $1000^{0.12 x}=25,000,, x \approx 12.22$
9.5.63: $\frac{1}{5} 4^{x+2}=300,, x \approx 3.28$
9.5.67: $7+e^{2-x}=28,, x \approx-1.04$
9.5.70: $6-3 e^{-x}=-15,, x \approx-1.95$
9.5.72: $10+e^{4 x}=18,, x \approx 0.52$
9.5.73: $17-e^{\frac{x}{4}}=14,, x \approx 4.39$
9.5.83: $\log _{10} x=-1,, x \approx 0.10$
9.5.85: $\log _{3} x=4.7, x \approx 174.77$
9.5.87: $4 \log _{3} x=28,, x \approx 2187.00$
9.5.92: $\log _{3} 6 x=4,, x \approx 13.50$
9.5.93: $\ln 2 x=\frac{1}{5},, x \approx 0.61$
9.5.99: $\frac{3}{4} \ln (x+4)=-2, x \approx-3.93$
9.5.105: $\log _{4} x+\log _{4} 5=2,, x=3.20$
9.5.109: $\log _{5}(x+3)-\log _{5} x=1,, x \approx 0.75$
9.5.114: $\log _{6}(x-5)+\log _{6} x=2,, x=9.00$
9.5.118: $\log _{3} 2 x+\log _{3}(x-1)-\log _{3} 4=1$
9.5.123: A deposit of $\$ 10,000$ is placed in a savings account for 2 years. The interest for the account is compounded continuously. At the end of 2 years, the balance in the account is $\$ 11,051.71$. What is the annual interest rate for this account? 5%
9.5.125: Solve the exponential equation $5000=2500 e^{0.09 t}$ for t to determine the number of years for an investment of $\$ 2500$ to double in value when compounded continuously at the rate of 9%. 7.7 years

Section 9.6

In Exercises 1-6, find the annual interest rate.

	Principal	Balance	Time	Compounding
	$\$ 500$	$\$ 1004.83$	10 years	Monthly, 7%
$\mathbf{9 . 6 . 1}, \mathbf{3}, \mathbf{5}:$	$\$ 1000$	$\$ 36,581.00$	40 years	Daily, 9%
	$\$ 750$	$\$ 4234.00$	10 years	continuous, 8%

In Exercises 7-12, find the time for the investment to double.

Principal	Rate	Compounding	
$\$ 900$	$5 \frac{3}{4} \%$	Quaterly, 9.27 years	
9.6.7,9,12:	$\$ 18,000$	8%	continuous, 8.66 years
	$\$ 600$	9.75%	continuous ,7.11 years

In Exercises 13-18, determine the type of compounding. Solve the problem by trying the type of compounding. Solve the problem by trying the more common types of compounding.

$$
\begin{array}{cccc}
\text { Principal } & \text { Balance } & \text { Time } & \text { Rate } \\
\$ 5000 & \$ 8954.24 & 10 \text { years } & 6 \% \text {, yearly } \\
\$ 750 & \$ 1587.75 & 10 \text { years } & 7.5 \% \text {, continuous } \\
\$ 4000 & \$ 4788.76 & 2 \text { years } & 9 \% \text {, daily }
\end{array}
$$

In Exercises, 19,24, find the effective yield.

$$
\begin{array}{ccc}
& \text { Rate } & \text { Compounding } \\
\text { 9.6.19,24: } & 8 \% & \text { continuous, } 8.33 \% \\
& 9 \% & \text { quaterly }, 9.31 \%
\end{array}
$$

9.6.27: Is it necessary to know the principal P to find the doubling time in Exercises 7-12? NO. Each time the amount is divided by the principal, the result is always 2 .

In Exercises 30, 35, find the principal that must be deposited under the specified conditions to obtain the given balance.

	Balance	Rate	Time	Compounding
9.6.30,35:	$\$ 5000$	8%	5 years	Continuous, $\$ 3351.60$
	$\$ 1000$	5%	1 years	Daily, $\$ 951.23$

9.6.37: you make nomthly deposits of 30 dollars in a saving account at an annual interest rate 8%, compounded continuously. Find the balance $A=\frac{P\left(e^{r t}-1\right)}{e\left(\frac{r}{12}\right)}$ after 10 years. $\$ 5496.57$
9.6.57: The population $P=\frac{11.7}{1+1.21 e^{-0.0269 t}}$, where $\mathrm{t}=0$ represents 1990. Use the model to predict the population in 2025. 7.949 billion people

