ASSIGNMENT 15

DYLAN ZWICK'S MATH 1010 CLASS

1. Section 9.4

In Exercises 1-24, use properties of logarithms to evaluate the expression without a calculator (If not possible , state the reason)

9.4.1: $\log_{12}(12^3)$

9.4.2: log₃(81)

9.4.3:
$$\log_4\left(\frac{1}{16}\right)^3$$

9.4.5: $\log_5(\sqrt[3]{5})$

9.4.6: $\ln(\sqrt{e})$

9.4.7: $\ln(14^0)$

9.4.10: $\ln(e^7)$

9.4.11: $\log_4(8) + \log_4(2)$

9.4.12: $\log_6(2) + \log_6(3)$

9.4.13:
$$\log_8(4) + \log_8(16)$$

9.4.15:
$$\log_3(54) - \log_3(2)$$

9.4.16: $\log_5(50) - \log_5(2)$

9.4.18: $\log_3(324) - \log_3(4)$

9.4.21: $\ln(e^8) + \ln(e^4)$

9.4.25: Use $\log_4(2) = 0.500$ to approximate $\log_4(8)$

In Exercises 33,35, use $\ln(3) \approx 1.0986, \ln(5) \approx 1.6094$ to approximate the expression.

9.4.33: ln(9)

9.4.35:
$$\ln\left(\frac{5}{3}\right)$$

In Exercises 41,45, use the properties of logarithms to verify the statement.

9.4.41:
$$-3\log_4(2) = \log_4\left(\frac{1}{8}\right)$$

9.4.45:
$$-3\ln\left(\frac{1}{7}\right) = \ln(56) - \ln(8)$$

In Exercises 47-74, use the properties of logarithms to expand the expression.

9.4.47: $\log_3(11x)$

9.4.49: ln(3y)

9.4.50: ln(5*x*)

9.4.52: $\log_3(x^3)$

9.4.53: $\log_4(x^{-3})$

9.4.55: $\log_4(\sqrt{3x})$

9.4.57: $\log_2\left(\frac{z}{17}\right)$

9.4.60:
$$\ln\left(\frac{\sqrt{x}}{x+9}\right)$$

9.4.63: $\log_4[x^6(x+7)^2]$

9.4.67:
$$\ln(\sqrt{x(x+2)})$$

9.4.71:
$$\ln\left(\sqrt[3]{\frac{x^2}{x+1}}\right)$$

9.4.74:
$$\log_5\left(\frac{x^2y^5}{z^7}\right)$$

In Exercises 75-100, use the properties of logarithms to condense the expression.

9.4.75:
$$\log_{12}(x) - \log_{12}(3)$$

9.4.78:
$$\log_5(2x) + \log_5(3y)$$

9.4.83: $-2\log_5(2x)$

9.4.88: $\ln(6) - 3\ln(z)$

9.4.90:
$$4\ln(2) + 2\ln(x) - \frac{1}{2}\ln(y)$$

9.4.93:
$$2[\ln(x) - \ln(x+1)]$$

4

9.4.96: $5 \log_3(x) + \log_3(x-6)$

9.4.100: $2\log_5(x+y) + 3\log_5(w)$

9.4.105: Simplify $\log_5(\sqrt{50})$

9.4.113: The relationship between the number of decibels B and the intensity of a sound I in watts per centimeter squared is given by

$$B = 10 \log_{10} \frac{I}{10^{-16}}.$$

Use properties of logarithms to write the formula in simpler form, and determine the number of decibels of a thunderclap with and intensity of 10^{-3} watt per centimeter squared.

2. Section 9.5

In Exercises 1,3, determine whether each value of x is a solution of the equation.

9.5.1:
$$3^{2x-5} = 27$$
, $(a)x = 1$ $(b)x = 4$

9.5.3:
$$e^{x+5} = 45$$
, $(a)x = -5 + \ln 45$ $(b)x \approx -2.1933$

In Exercises 7-34, solve the equation.

9.5.7:
$$7^x = 7^3$$

9.5.8:
$$4^x = 4^6$$

9.5.10:
$$e^{x+3} = e^8$$

9.5.13:
$$6^{2x} = 36$$

9.5.15:
$$3^{2-x} = 81$$

9.5.17:
$$5^x = \frac{1}{125}$$

9.5.20:
$$3^{x+2} = \frac{1}{27}$$

9.5.21:
$$4^{x+3} = 32^x$$

9.5.22:
$$9^{x-2} = 243^{x+1}$$

9.5.23: $\ln(5x) = \ln(22)$

9.5.26:
$$log_5(2x) = log_5(36)$$

9.5.29:
$$\log_2(x+3) = \log_2(7)$$

9.5.30:
$$\log_4(x-8) = \log_4(-4)$$

9.5.31:
$$\log_5(2x-3) = \log_5(4x-5)$$

9.5.35: Simplify $\ln(e^{2x-1})$

In Exercises 39-118, solve the exponential or logarithmic equation. (Round your answer to two decimal places.)

9.5.39:
$$3^{x} = 91$$

9.5.40: $4^{x} = 40$
9.5.42: $2^{x} = 3.6$
9.5.45: $7^{3y} = 126$
9.5.47: $3^{2-x} = 8$
9.5.50: $12^{x-1} = 324$
9.5.51: $4e^{-x} = 24$
9.5.53: $\frac{1}{4}e^{x} = 5$
9.5.56: $4e^{-3x} = 6$

9.5.58: $32(1.5)^x = 640$

9.5.61:
$$1000^{0.12x} = 25,000$$

9.5.63:
$$\frac{1}{5}4^{x+2} = 300$$

9.5.67:
$$7 + e^{2-x} = 28$$

9.5.70:
$$6 - 3e^{-x} = -15$$

9.5.72: $10 + e^{4x} = 18$

9.5.73: $17 - e^{\frac{x}{4}} = 14$

9.5.83:
$$\log_{10}(x) = -1$$

9.5.85: $\log_3(x) = 4.7$

9.5.87: $4 \log_3(x) = 28$

9.5.92:
$$\log_3(6x) = 4$$

9.5.93:
$$\ln(2x) = \frac{1}{5}$$

9.5.99:
$$\frac{3}{4}\ln(x+4) = -2$$

9.5.105:
$$\log_4(x) + \log_4(5) = 2$$

9.5.109:
$$\log_5(x+3) - \log_5(x) = 1$$

9.5.114:
$$\log_6(x-5) + \log_6(x) = 2$$

9.5.118:
$$\log_3(2x) + \log_3(x-1) - \log_3(4) = 1$$

9.5.123: A deposit of \$ 10,000 is placed in a savings account for 2 years. The interest for the account is compounded continuously. At the end of 2 years, the balance in the account is \$11,051.71. What is the annual interest rate for this account?

9.5.125: Solve the exponential equation $5000 = 2500e^{0.09t}$ for t to determine the number of years for an investment of \$2500 to double in value when compounded continuously at the rate of 9%.

3. Section 9.6

In Exercises 1-6, find the annual interest rate.

	Principal	Balance	Time	Compounding
	\$ 500	\$1004.83	10 years	Monthly
06195.	\$ 1000	36,581.00	40 years	Daily
9.0.1,3,3:	\$ 750	8267.38	30 years	Continuously

In Exercises 7-12, find the time for the investment to double.

	Principal	Rate	Compounding
	\$2500	7.5~%	Monthly
067019.	\$18,000	8%	Continuously
9.0.7,9,12:	\$600	9.75%	Continuously

In Exercises 13-18, determine the type of compounding. Solve the problem by trying the more common types of compounding.

	Principal	Balance	Time	Rate
	\$ 5000	\$8954.24	10 years	6~%
9.6.13,15,18:	\$ 750	\$1587.75	10 years	7.5%
	\$ 4000	\$4788.76	2 years	9%

In Exercises, 19,24, find the effective yield.

	Rate	Compounding
9.6.19,24:	8%	Continuously
	9%	Quaterly

9.6.27: Is it necessary to know the principal P to find the doubling time in Exercises 7-12? Explain.

ASSIGNMENT 15

In Exercises 30, 35, find the principal that must be deposited under the specified conditions to obtain the given balance.

	Balance	Rate	Time	Compounding
9.6.30,35:	\$ 5000	8~%	5 years	Continuously
	\$ 1000	5~%	1 year	Daily

- **9.6.37:** You make monthly deposits of 30 dollars in a saving account at an annual interest rate of 8 %, compounded continuously. Find the balance $A = \frac{P(e^{rt} 1)}{e^{(\frac{r}{12})}}$ after 10 years.
- **9.6.57:** The population of the world is modeled by the equation $P = \frac{11.7}{1+1.21e^{-0.0269t}}$, where P is in billions and t = 0 represents 1990. Use the model to predict the population in 2025.