DYLAN ZWICK'S MATH 1010 CLASS

9.1 EXPONENTIAL FUNCTIONS

Simplify the expression.

9.1.1:
$$3^x \cdot 3^{x+2}$$
 9.1.4: $\frac{3^{2x+3}}{3^{x+1}}$

9.1.3:
$$\frac{e^{x+2}}{e^x}$$
 9.1.5: $3(e^x)^{-2}$

Evaluate the function as indicated. Use a calculator ONLY IF it is necessary or more efficient.

9.1.17:
$$f(x) = 3^x, (a)x = -2, (b)x = 0, (c)x = 1.$$

9.1.21:
$$f(t) = 500(\frac{1}{2})^t, (a)t = 0, (b)t = 1, (c)t = \pi.$$

9.1.26:
$$P(t) = \frac{10,000}{(1.01)^{12t}}, (a)t = 2, (b)t = 10, (c)t = 20$$

Sketch the graph of the function. Identify the horizontal asymptote.

9.1.31:
$$f(x) = 3^x$$
 9.1.35: $g(x) = 3^x - 2$

9.1.32:
$$h(x) = \frac{1}{2}(3^x)$$
 9.1.40: $f(t) = 2^{t^2}$

9.1.33: $f(x) = 3^{-x}$

9.1.69: Radioactive Decay After t years, 16 grams of a radioactive element with a half-life of 30 years decays to a mass y(in grams) given by $y = 16(\frac{1}{2})^{t/30}, t \ge 0$. How much of the initial mass remains after 80 years?

9.1.70: Radioactive Substance In July of 1999, an individual bought several leaded containers from a metals recycler and found two of them labeled" radioactive". An investigation showed that the containers, originally obtained from Ohio State University, apparently had been used to store iodine-131 starting in January of 1999. Because iodine-131 has a half life of only 8 days, no elevated radiation levels were detected. Suppose 6 grams of iodine-131 is stored in January. The mass y (in grams) that remains after t days is given by $y = 6(\frac{1}{2})^{t/8}, t \ge 0$. How much of the substance is left in July, after 180 days have passed.

9.1.71: Compound Interest A sum of \$5000 is invested at an annual interest rate of 6%, compounded monthly. Find the balance in the account after 5 years.

9.1.72: Compound Interest A sum of \$2000 is invested at an annual interest rate of 8%, compounded quarterly. Find the balance in the account after 10 years.

Compound Interest Complete the table to determine the balance A for P dollars invested at rate r for t years, compounded n times per year.

9.1.73: P = \$100, r = 7%, t = 15 years.

n	1	4	12	365	Continuous compounding
A					

9.1.75: P = \$2000, r = 9.5%, t = 10 years.

n	1	4	12	365	Continuous compounding
A					

Compound Interest Complete the table to determine the principal P that will yield a balance of A dollars when invested at rate r for t year, compounded n times per year.

9.1.77: A = \$5000, r = 7%, t = 10 years

					· · · · · · · · · · · · · · · · · · ·
n	1	4	12	365	Continuous compounding
P					

9.	9.1.79: $A = \$1,000,000, r = 10.5\%, t = 40$ ye									
	n	1	4	12	365	Continuous compounding				
	P									

9.1.82: Population Growth The populations P (in millions) of the United States from 1980 to 2006 can be approximated by the exponential function $P(t) = 226(1.0110)^t$, where t is the time in years, with t = 0 corresponding to 1980. Use the model to estimate the populations in years (a) 2010 and (b) 2020.

9.2 Composite and Inverse Functions

Find the compositions.

9.2.1: f(x) = 2x + 3, g(x) = x - 6

(a)
$$(f \circ g)(x)$$
 (c) $(f \circ g)(4)$

(b)
$$(g \circ f)(x)$$
 (d) $(g \circ f)(7)$

9.2.2:
$$f(x) = x - 5, g(x) = 3x + 2$$

(a)
$$(f \circ g)(x)$$
 (c) $(f \circ g)(3)$

(b)
$$(g \circ f)(x)$$
 (d) $(g \circ f)(3)$

9.2.3:
$$f(x) = x^2 + 3, g(x) = x + 2$$

(a) $(f \circ g)(x)$ (c) $(f \circ g)(2)$

(b)
$$(g \circ f)(x)$$
 (d) $(g \circ f)(-3)$

9.2.5:
$$f(x) = |x - 3|, g(x) = 3x$$

(a) $(f \circ g)(x)$ (c) $(f \circ g)(1)$

(b)
$$(g \circ f)(x)$$
 (d) $(g \circ f)(2)$

9.2.8:
$$f(x) = \sqrt{x+6}, g(x) = 2x-3$$

(a) $(f \circ g)(x)$ (c) $(f \circ g)(3)$

(b)
$$(g \circ f)(x)$$
 (d) $(g \circ f)(-2)$

9.2.10:
$$f(x) = \frac{4}{x^2 - 4}, g(x) = \frac{1}{x}$$

(a) $(f \circ g)(x)$ (c) $(f \circ g)(-2)$

(b)
$$(g \circ f)(x)$$
 (d) $(g \circ f)(1)$

9.2.11: Use the functions f and g to find the indicated values. $f = \{(-2,3), (-1,1), (0,0), (1,-1), (2,-3)\}$ $g = \{(-3,1), (-1,-2), (0,2), (2,2), (3,1))\}$ (a) f(1) (c) $(g \circ f)(1)$

(b) g(-1)

9.2.15: Use the functions f and g to find the indicated values. $f = \{(0, 1), (1, 2), (2, 5), (3, 10), (4, 17))\}$ $g = \{(5, 4), (10, 1), (2, 3), (17, 0), (1, 2)\}$ (a) f(2) (c) $(g \circ f)(1)$

(b) g(10)

Find the compositions. $(a)f\circ g$ and $(b)g\circ f.$ Then find the domain of each composition.

9.2.19:
$$f(x) = 3x + 4, g(x) = x - 7$$

9.2.21:
$$f(x) = \sqrt{x+2}, g(x) = x-4$$

9.2.23:
$$f(x) = x^2 + 3, g(x) = \sqrt{x-1}$$

9.2.26:
$$f(x) = \frac{x}{x-4}, g(x) = \sqrt{x}$$

Use the Horizontal Line test to determine if the function is one-to-one and so has an inverse function.

9.2.35: $f(x) = x^2 - 2$

9.2.37: $f(x) = x^2, x \ge 0$

9.2.39: $g(x) = \sqrt{25 - x^2}$

Verify algebraically that the functions f and g are inverse functions of each other.

9.2.41: $f(x) = -6x, g(x) = -\frac{1}{6}x$

9.2.43:
$$f(x) = 1 - 2x, g(x) = \frac{1}{2}(1 - x)$$

9.2.45:
$$f(x) = \sqrt[3]{x+1}, g(x) = x^3 - 1$$

Find the inverse function of f. Verify that $f(f^{-1}(x))$ and $f^{-1}(f(x))$ are equal to the identity function.

9.2.49:
$$f(x) = 5x$$
 9.2.55: $f(x) = 5 - x$

9.2.52:
$$f(x) = \frac{1}{3}x$$
 9.2.59: $f(x) = \sqrt[3]{x}$

Find the inverse function (if it exists).

9.2.64:
$$g(t) = 6t + 1$$
 9.2.67: $g(x) = x^2 + 4$

9.2.70:
$$h(x) = \sqrt{x+5}$$

9.2.105: Ripples You are standing on a bridge over a calm pond and drop a pebble, causing ripples of concentric circles in the water. The radius (in feet) of the outermost ripple is given by r(t) = 0.6t, where t is time in seconds after the pebble hits the water. The area of the circle is given by the function $A(r) = \pi r^2$. Find an equation for the composition A(r(t)). What are the input and output of this composite function? What is the area of the circle after 3 seconds. 9.3 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Write the logarithmic equation in exponential form.

9.3.2:
$$\log_{11} 121$$
 9.3.8: $\log_{64} 4$

9.3.3:
$$\log_2 \frac{1}{32}$$
 9.3.10: $\log_{16} 8$

Write the exponential equation in logarithmic form.

9.3.13:
$$6^2 = 36$$

9.3.19: $25^{-1/2} = \frac{1}{5}$
9.3.15: $5^{-3} = \frac{1}{125}$
9.3.22: $6^1 = 6$

Evaluate the logarithmic without using a calculator. (If not possible, state the reason)

9.3.25: log ₂ 8	9.3.35: $\log_2(-3)$
9.3.29: $\log_2 \frac{1}{16}$	9.3.37: log ₄ 1
9.3.32: $\log_6 \frac{1}{216}$	9.3.38: log ₃ 1
	9.3.41: log ₉ 3

Sketch the graph of f, Then use the graph of f to sketch the graph of g.

9.3.57:
$$f(x) = 3^x, g(x) = \log_3 x$$

Identify the transformation of the graph of $f(x) = \log_2 x$. Then sketch the graph of h.

9.3.61: $h(x) = 3 + \log_2 x$ **9.3.64:** $h(x) = \log_2(x+5)$

Sketch the graph of the function. Identify the vertical asymptote. 9.3.67: $f(x) = \log_5 x$

9.3.73: $g(x) = \log_2(x-3)$

9.3.99: $f(x) = -\ln x$

9.3.103: $f(x) = 3 + \ln x$

Solving Problems:

9.3.125: American Elk The antler spread a (in inches) and shoulder height h (in inches) of an adult male American Elk are related by the model

 $h = 116 \log_{10}(a + 40) - 176.$

Approximate to one decimal place the shoulder height of a male American Elk with an antler spread of 55 inches.

9.3.127: Compound Interest The time t in years for an investment to double in value when compounded continuously at interest rate r is given by $t = \frac{\ln 2}{r}$. Complete the table, which shows the "doubling times" for several interest rates.

r	0.07	0.08	0.09	0.10	0.11	0.12
t						