ASSIGNMENT 14

DYLAN ZWICK'S MATH 1010 CLASS

9.1 Exponential Functions

Simplify the expression.
9.1.1: $3^{x} \cdot 3^{x+2}$
9.1.4: $\frac{3^{2 x+3}}{3^{x+1}}$
9.1.3: $\frac{e^{x+2}}{e^{x}}$
9.1.5: $3\left(e^{x}\right)^{-2}$

Evaluate the function as indicated. Use a calculator ONLY IF it is necessary or more efficient.
9.1.17: $f(x)=3^{x},(a) x=-2,(b) x=0,(c) x=1$.
9.1.21: $f(t)=500\left(\frac{1}{2}\right)^{t},(a) t=0,(b) t=1,(c) t=\pi$.
9.1.26: $P(t)=\frac{10,000}{(1.01)^{12 t}},(a) t=2,(b) t=10,(c) t=20$

Sketch the graph of the function. Identify the horizontal asymptote.
9.1.31: $f(x)=3^{x}$
9.1.35: $g(x)=3^{x}-2$
9.1.32: $h(x)=\frac{1}{2}\left(3^{x}\right)$
9.1.40: $f(t)=2^{t^{2}}$
9.1.33: $f(x)=3^{-x}$
9.1.69: Radioactive Decay After t years, 16 grams of a radioactive element with a half-life of 30 years decays to a mass y (in grams) given by $y=16\left(\frac{1}{2}\right)^{t / 30}, t \geq 0$. How much of the initial mass remains after 80 years?
9.1.70: Radioactive Substance In July of 1999, an individual bought several leaded containers from a metals recycler and found two of them labeled" radioactive". An investigation showed that the containers, originally obtained from Ohio State University, apparently had been used to store iodine-131 starting in January of 1999.Because iodine-131 has a half life of only 8 days, no elevated radiation levels were detected. Suppose 6 grams of iodine-131 is stored in January. The mass y (in grams) that remains after t days is given by $y=6\left(\frac{1}{2}\right)^{t / 8}, t \geq 0$. How much of the substance is left in July, after 180 days have passed.
9.1.71: Compound Interest A sum of $\$ 5000$ is invested at an annual interest rate of 6%, compounded monthly. Find the balance in the account after 5 years.
9.1.72: Compound Interest A sum of $\$ 2000$ is invested at an annual interest rate of 8%, compounded quarterly. Find the balance in the account after 10 years.

Compound Interest Complete the table to determine the balance A for P dollars invested at rate r for t years, compounded n times per year.
9.1.73: $P=\$ 100, r=7 \%, t=15$ years.

n	1	4	12	365	Continuous compounding
A					

9.1.75: $P=\$ 2000, r=9.5 \%, t=10$ years.

n	1	4	12	365	Continuous compounding
A					

Compound Interest Complete the table to determine the principal P that will yield a balance of A dollars when invested at rate r for t year, compounded n times per year.
9.1.77: $A=\$ 5000, r=7 \%, t=10$ years

n	1	4	12	365	Continuous compounding
P					

9.1.79: $A=\$ 1,000,000, r=10.5 \%, t=40$ years

n	1	4	12	365	Continuous compounding
P					

9.1.82: Population Growth The populations P (in millions) of the United States from 1980 to 2006 can be approximated by the exponential function $P(t)=226(1.0110)^{t}$, where t is the time in years, with $t=0$ corresponding to 1980. Use the model to estimate the populations in years (a) 2010 and (b) 2020.

9.2 Composite and Inverse Functions

Find the compositions.
9.2.1: $f(x)=2 x+3, g(x)=x-6$
(a) $(f \circ g)(x)$
(c) $(f \circ g)(4)$
(b) $(g \circ f)(x)$
(d) $(g \circ f)(7)$
9.2.2: $f(x)=x-5, g(x)=3 x+2$
(a) $(f \circ g)(x)$
(c) $(f \circ g)(3)$
(b) $(g \circ f)(x)$
(d) $(g \circ f)(3)$
9.2.3: $f(x)=x^{2}+3, g(x)=x+2$
(a) $(f \circ g)(x)$
(c) $(f \circ g)(2)$
(b) $(g \circ f)(x)$
(d) $(g \circ f)(-3)$
9.2.5: $f(x)=|x-3|, g(x)=3 x$
(a) $(f \circ g)(x)$
(c) $(f \circ g)(1)$
(b) $(g \circ f)(x)$
(d) $(g \circ f)(2)$
9.2.8: $f(x)=\sqrt{x+6}, g(x)=2 x-3$
(a) $(f \circ g)(x)$
(c) $(f \circ g)(3)$
(b) $(g \circ f)(x)$
(d) $(g \circ f)(-2)$
9.2.10: $f(x)=\frac{4}{x^{2}-4}, g(x)=\frac{1}{x}$
(a) $(f \circ g)(x)$
(c) $(f \circ g)(-2)$
(b) $(g \circ f)(x)$
(d) $(g \circ f)(1)$
9.2.11: Use the functions f and g to find the indicated values. $f=\{(-2,3),(-1,1),(0,0),(1,-1),(2,-3)\}$ $g=\{(-3,1),(-1,-2),(0,2),(2,2),(3,1))\}$
(a) $f(1)$
(c) $(g \circ f)(1)$
(b) $g(-1)$
9.2.15: Use the functions f and g to find the indicated values. $f=\{(0,1),(1,2),(2,5),(3,10),(4,17))\}$ $g=\{(5,4),(10,1),(2,3),(17,0),(1,2)\}$
(a) $f(2)$
(c) $(g \circ f)(1)$
(b) $g(10)$

Find the compositions. (a) $f \circ g$ and $(b) g \circ f$. Then find the domain of each composition.
9.2.19: $f(x)=3 x+4, g(x)=x-7$
9.2.21: $f(x)=\sqrt{x+2}, g(x)=x-4$
9.2.23: $f(x)=x^{2}+3, g(x)=\sqrt{x-1}$
9.2.26: $f(x)=\frac{x}{x-4}, g(x)=\sqrt{x}$

Use the Horizontal Line test to determine if the function is one-to-one and so has an inverse function.
9.2.35: $f(x)=x^{2}-2$

9.2.37: $f(x)=x^{2}, x \geq 0$

9.2.39: $g(x)=\sqrt{25-x^{2}}$

Verify algebraically that the functions f and g are inverse functions of each other.
9.2.41: $f(x)=-6 x, g(x)=-\frac{1}{6} x$
9.2.43: $f(x)=1-2 x, g(x)=\frac{1}{2}(1-x)$
9.2.45: $f(x)=\sqrt[3]{x+1}, g(x)=x^{3}-1$

Find the inverse function of f. Verify that $f\left(f^{-1}(x)\right)$ and $f^{-1}(f(x))$ are equal to the identity function.
9.2.49: $f(x)=5 x$
9.2.55: $f(x)=5-x$
9.2.52: $f(x)=\frac{1}{3} x$
9.2.59: $f(x)=\sqrt[3]{x}$

Find the inverse function(if it exists).
9.2.64: $g(t)=6 t+1$
9.2.67: $g(x)=x^{2}+4$
9.2.70: $h(x)=\sqrt{x+5}$
9.2.105: Ripples You are standing on a bridge over a calm pond and drop a pebble, causing ripples of concentric circles in the water. The radius (in feet) of the outermost ripple is given by $r(t)=0.6 t$, where t is time in seconds after the pebble hits the water. The area of the circle is given by the function $A(r)=$ πr^{2}. Find an equation for the composition $A(r(t))$. What are the input and output of this composite function? What is the area of the circle after 3 seconds.
9.3 Exponential and Logarithmic Functions

Write the logarithmic equation in exponential form.
9.3.1: $\log _{7} 49$
9.3.6: $\log _{10} 10,000$
9.3.2: $\log _{11} 121$
9.3.8: $\log _{64} 4$
9.3.3: $\log _{2} \frac{1}{32}$
9.3.10: $\log _{16} 8$

Write the exponential equation in logarithmic form.
9.3.13: $6^{2}=36$
9.3.19: $25^{-1 / 2}=\frac{1}{5}$
9.3.15: $5^{-3}=\frac{1}{125}$
9.3.22: $6^{1}=6$

Evaluate the logarithmic without using a calculator. (If not possible, state the reason)
9.3.25: $\log _{2} 8$
9.3.35: $\log _{2}(-3)$
9.3.29: $\log _{2} \frac{1}{16}$
9.3.37: $\log _{4} 1$
9.3.32: $\log _{6} \frac{1}{216}$
9.3.38: $\log _{3} 1$
9.3.41: $\log _{9} 3$

Sketch the graph of f, Then use the graph of f to sketch the graph of g.
9.3.57: $f(x)=3^{x}, g(x)=\log _{3} x$

Identify the transformation of the graph of $f(x)=\log _{2} x$. Then sketch the graph of h.
9.3.61: $h(x)=3+\log _{2} x$
9.3.64: $h(x)=\log _{2}(x+5)$

Sketch the graph of the function.Identify the vertical asymptote.
9.3.67: $f(x)=\log _{5} x$
9.3.73: $g(x)=\log _{2}(x-3)$
9.3.99: $f(x)=-\ln x$
9.3.103: $f(x)=3+\ln x$

Solving Problems:
9.3.125: American Elk The antler spread a (in inches) and shoulder height h (in inches) of an adult male American Elk are related by the model

$$
h=116 \log _{10}(a+40)-176 .
$$

Approximate to one decimal place the shoulder height of a male American Elk with an antler spread of 55 inches.
9.3.127: Compound Interest The time t in years for an investment to double in value when compounded continuously at interest rate r is given by $t=\frac{\ln 2}{r}$. Complete the table, which shows the "doubling times" for several interest rates.

r	0.07	0.08	0.09	0.10	0.11	0.12
t						

