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1 Cylindrical Coordinates

When we were dealing with double integrals, we found that with domains
D that have a level of symmetry around a point, especially around the ori-
gin, it's frequently easier to calculate the double integrals by first convert-
ing to polar coordinates. For example, if we want o calculate the double
integral of the function:
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over the region [ depicted below:

In Cartesian coordinates this integral would be:
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which, especially due to the +/1 — z? term in the inner integral, is very
difficult to integrate. However, if we convert to polar coordinates we get

the integral:
e KR,
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which is so easy to integrate we can pretty much do it in our heads.

Well, the same basic idea can be applied to three dimensional systems.
Suppose we want to integrate a function f{r.y. =} over a domain S, and
the domain S displays a large amount of symmetry about an axis, espe-
cially the s-axis. In this case, it's frequently easier to do the triple integral
bv converting to cvlindrical coordinates.

The basic idea is this. Suppose we wish to e\-’a]uate/ / / ftaooy. 2V,
where 5 is a solid z-simple region whose projection onto the .ry-plane is
r-simple.

Partition 5 by means of a cylindrical grid, where the typical volume
element has the shape shown below.
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This piece is called a cylindrical wedge, and has volume AV, = [FRASTRACEFACS
We can approximate the triple integral as:
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where we use the transformation maps for going from Cartesian to
cviindrical:

v=rcosfy=ranf =z

Now, if we take the limit as the norm of our partition goes to 0 (our
usual strategy) we get:
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Example
Evaluate the integral:
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and describe (draw) the region of integration.



2 Spherical Coordinates

Now, suppose we have aregion of integration .5 that exhibits a large amount
of symmetry around a point, especially the origin. Then this region is fre-
quently easiest to describe in terms of spherical coordinates.

Now, the theory behind integration in spherical coordinates is basically
{he same as the theory behind integration in cylindrical coordinates. We
partition our region 5 up into “spherical wedges” that look like the figure

below.
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The volume of this spherical wedge is:
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and so if we take the limit over our partitions as the norm approaches
zero, we get the following equahty:
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Where we've used the transformations:

pom o peosfsine, y = psinfdsing, © = peos o,



Example
Evaluate the integral:
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and describe (sketch) the region of integration £.
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3 Examples

Example
Evaluate the integral:
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Examiple
Find the volume of the solid bounded above by the sphere a + Yt =

9 below by the plane = = 0, and laterally by t the cylinder 2% + y* = 1.



Exaniple
Find the volume of the solid within the sphere 2% + %+ 27 = 16, outside



