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1 Double Integrals in Polar Coordinates

Some curves in the plane can most easily be defined using polar coordi-
nates. These curves include circles, cardioids, and roses. 50, as you might
expect, double integrals over regions defined by these curves are more
easily evaluated if we switch to polar coordinates. However, the question
that naturally arises is, how do we perform double integrals using polar
coordinates? Well, today we'll talk about how to do this.

1.1 Polar Rectangles

First off, instead of looking at rectangular regions, we need to look at re-
gions called “polar rectangles”. These are regions that look like this:
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Note that we require r; > Oand h ~ #) < 27

Now, the area of a “slice of pizza” like this:
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two shices of pizza, and therefore has the area:
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where 7 is the average value of 1, and 7.




1.2 The Double Integral in Polar Coordinates

So, how do we take a double integral in polar coordinates? Well, if we're
integrating over a polar rectangle, we just partition the polar rectangle up
into smaller rectangles:
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and then approximate the volume as:
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Then, we do what we always do. We take the limit as these partitions
become finer and finer, and the limit is defined as our total volume, or in
other words, our double integral.
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where we note that if our function [ is defined in terms of the variables

+and -y, sof{x y), we can rewrite it as a function of m and ¢ using the
relations = — rcos# and y = rsinf, creating f(rcosf.rsinfi).

Now, we've derived this result under the assumtion that f is nonneg-
ative, but it's also valid in general, as long as our function [ is integrable,
and we interpret the volume of regions under the wy-plane as "negative

volume”.



1.3 Iterated Integrals
The result above becomes useful when we write our polar integral as an
iterated integral. Here's an example.

Example
Evaluate the integral:
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Now, so far we've only dealt with integrals over polar rectangles, which ; f

are a pretty restrictive class of domains. However, we can extend our def- [
inition to deal with r-simple and ¢-simple regions like the ones depicted / /1?.,

below in pretty much exactly the same way as we did for c-simple and
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y-simple regions.
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I'll omit the details and just skip to a few examples:



1.4 Examples

Example
Evaluate the integral:
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where S is the region in the first quadrant that is outside the circle r = 2
and inside the cardioid » = 201 + cos/).
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Example
Evaluate the integral:
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where S is one leaf of the four-feaved rose r = asin 26,

Note: the integral / / rdrd# calculates the area of the region 5.
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1.5 The Area Under the Normal Distribution Curve

If you try to take the antiderivative of the function f{ci = ¢ vou will
fail. More precisely, you cannot express the antiderivative of f(r}in terms
of the standard functions we all know and love like polynomials, rational
functions, logarithms, exponentials, and triginometric functions. In fact,
the antiderivative is a new function called the “error function”, Erf, and
pronounced “urf”. So, not knowing anything about the properties of the
error function, suppose I asked you to calculate:
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how would you do it? Well, you probably wouldn't, but using polar
integrals you can calculate this using one of the most ingenious little tricks
in all of mathematics. This one’s a keeper. Here's what vou do. You note

that:
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How the heck is this any casier? We've taken a single integral and
made it into a double integral. Doesn’t that make 1t harder? Well, check
this out. Basically, what we're doing 1s integrating over all of k-, and in
polar coordinates that would be when 1 goes from 0 to 5 and # goes from
0 to 2. So, we can transform the above integral into an integral in polar

coordinates:
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Now are you seeing it? That factor of integration 1 is here to save the
day. From this point on the integral is casy. We just do a v substitution of
u =1’ to get:
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Now, we can integrate this no problem to get:
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So, if we walk back the cat on our series of equalities we get
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Amazing! Also, if you've taken a statistics class, vou may have seen
the normalized normatl distribution curve written as:

and you may have wondered, if you wonder about these things (and
you should) why the heck there was a V271 term in there. Well, now you
know. As an exercise, you should try to confirm that:




