Math 2210 - Section 13.3 Iterated Integrals

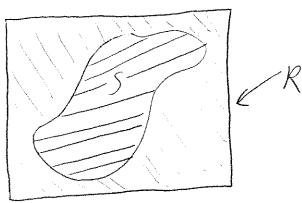
Dylan Zwick

Fall 2008

1 Double Integrals over Nonrectangular Regions

1.1 Double Integrals over y-Simple or x-Simple Regions

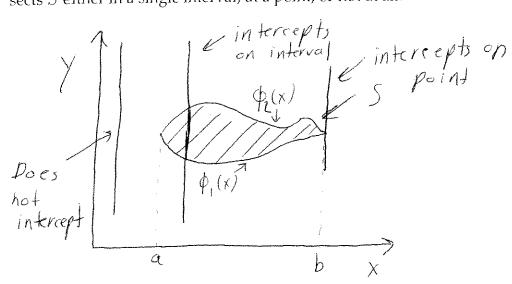
Consider an arbitrary closed and bounded set S in the plane. If we surround the set S with a rectangle R with sides parallel to the coordinate axes, then we can define (or redefine, if necessary) f(x,y) = 0 on the part of R outside of S. We say that f is integrable on S if it is integrable on R, and we write:



$$\int \int_{S} f(x,y)dA = \int \int_{R} f(x,y)dA.$$

Now, in general, an arbitrary closed and bounded set S can be very complicated. So, we're goint to restrict ourselves to just a subset of these

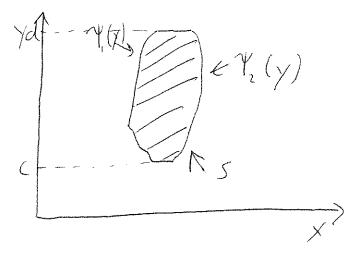
possible sets. Namely, we're going to restrict ourselves to either x-simple or y-simple sets. A set S is y-simple if any line parallel to the y-axis intersects S either in a single interval, at a point, or not at all.



So, a set S is y-simple if there are functions $\phi_1(x)$ and $\phi_2(x)$ on [a,b] such that:

$$S = \{(x, y) : \phi_1(x) \le y \le \phi_2(x), a \le x \le b\}.$$

A set S being x-simple is defined analogously.



Now, if we want to evaluate the double integral of a function f(x,y) over a y-simple set S, we first enclose S in a rectangle R and make f(x,y) = 0 outside of S. Then using our earlier definition we get:

$$\int \int_{S} f(x,y)dA = \int \int_{R} f(x,y)dA = \int_{a}^{b} \left[\int_{c}^{d} f(x,y)dy \right] dx =$$

$$\int_{a}^{b} \left[\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x,y)dy \right] dx.$$

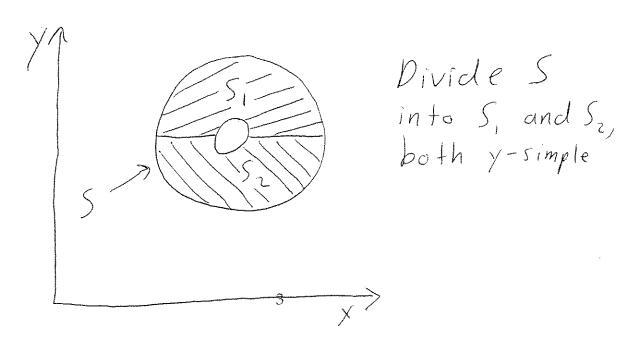
which, eliminating the middle terms gives us:

$$\int \int_{S} f(x,y)dA = \int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x,y)dydx.$$

If the set S is x-simple, identical reasoning gives us the formula:

$$\int \int_{S} f(x,y)dA = \int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y)dxdy.$$

Now, if S is neither x-simple nor y-simple, we can frequently divide it up into regions that are, and then integrate these regions individually, and then add up all the individual integrals to get the total integral.



1.2 Examples

Example Evaluate the integral:

$$\int_0^1 \int_0^{3x} x^2 dy dx$$

Example Evaluate the integral:

$$\int_0^{\frac{\pi}{2}} \int_0^{\sin y} e^x \cos y dx dy$$

Example

Evaluate the integral:

$$\int \int_S x dA$$

where S is the region between y = x and $y = x^3$.