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1 Double Integrals over Rectangles

1.1 Riemann Sums

The two major tools that we learn how to use in calculus are differentiation
and integration. 5o far in calculus HT we've dealt exclusively with differen-
tiation and problems involved with differential calculus hike maxima and
tangent planes. In this lecture, we begin our discussion of integration in
multivariable calculus.

If we remember back to single variable calculus, we remember that for
a function {we’ll say for now a non-negative function) fir} the integral of
the function from a to &
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represented the area under the curve f{r} froma to .




Now, if we think back to how we defined this area, it began with the
definition of the integral in terms of Riemann sums. The idea was that
you break up the interval from « to & into a bunch of smaller segments,
and then you draw a bunch of rectangles whose bases are the segments,
and whose heights are the valuess of the tunction [{r} over points within
the segments. The method of choosing the points within the segments (it
could be left sides, right sides, midpoints, or any other method) doesn’t

really matter.
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If we then add up the area of these rectangles we get an estimate of the
total area under the curve. Any way of chopping up the segment from « to
bis called a partition, P, and the norm of the partition [| ] is defined as the
length of the longest segment within the partition. Formally, the integral
was defined as the imit of the area approximations for any sequence of

parti%i(ms whose norm went to {
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where V is the number of segments, A, is the length of segment / in
the partition, and 27 Is any point within segment 1. Now, the snteﬂml was
well defined 1f this limit was well defined for any sequence of partitions
whose norm went to 0, and this turns out to be the case for many functions.
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In fact, it’s always true for functions that are piecewise continuous from a
to b

1.2 Riemann Sums for Double Integrei.lgw |

Now, in multivariable calculus the function fir. y) defines a surface = =
f(x.y), and the problem we will deal with first is how to calculate the
volume of the region underneath the function f{r.y) but above a given
rectangular domain 0. Just like we did with integrals of single variable
functions, we will be adding up the volumes of a bunch of rectangular
boxes.
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We chop up our domain A into a bunch of smaller rectangles, and
these rectangles form the bases for our rectangular boxes. The heights
of these rectangular boxes are given by f(1. y7), where the points (] y7)
are points in the respective rectangles [t;. We add up the volumes of all
the boxes to get an estimate of the volume under the surface f{r. y) and
over the region fi.

1.3 Definitions and Properties

The formal definition of the double integral is similar fo that tor the single

integral:



Definition - Let = == f{r. 4} be defined over a closed rectangle 7. 1f we
chop up R into a bunch of smaller rectangles, this defines a partition £,
and we define the norm of the partition P, denoted {|/7l], to be the maxi-
mum value of the diagonal of any of the rectangles in the partition. I the
limit
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where N is the number of subrectangles, (+7. 41 is a point inside sub-
rectangle R, and A, is the area of subrectangle [7, exists then flr. yjis
integrable over Il and we define the double integral as:
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Now, just as we said that any function that is piecewise continuous on
an interval is integrable on that interval, we have the following integrabil-
ity theorem for multiple integrals.

Theorem - If f is bounded on the closed rectangle /7 and if it is con-

tinuous there, except for on a finite number of smooth curves, then [ 15
integrable on /. If f is continuous on all of It, then [ 1s integrable there.

Properties of the Double Integral

1. Linearity
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where F, and 7. combine to form I and R, and R, overlap only
perhaps on a line segment.

3. Comparison Propeity

If fir oy < gle g forall (v oy € R, then
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1.4 Examples

Example
For

o) = { S
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Fxample
let B = {{r.y)}0 <z < 6.0 <y <d}and flry) = 10 - y~. Parti-

tion R into 6 equal squares by lines « = 2, v = 4, and y = 2. Approxi-
. - IS
mate / fleoy)dA as Z‘ f ey A AL where (3.5, 1 are the centers of
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the squares.



