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1 Tangent Planes and Approximations

1.1 Implicitly Defined Surfaces and their Tangent Planes

We recall from calculus I, and briefly from our lecture on the chain rule,
that we can define curves in R

2 implicitly by an equation of the form
f(x, y) = k, where k is a constant, or without loss of generality by f(x, y) =
0. An example is the unit circle x2 + y2 = 1, which can also be written as
x2+y2−1 = 0. Now, the same idea applies to surfaces in three dimensions,
as we’ve already seen in our study of quadric surfaces. A surface in R

3 can
be defined by an equation of the form F (x, y, z) = k, where k is a constant,
or again without loss of generality as F (x, y, z) = 0. For example the unit
sphere is x2 + y2 + z2 = 1, which can be rewritten as x2 + y2 + z2 − 1 = 0.

Now, if we consider a curve on this surface, (x(t), y(t), z(t)), where the
component functions all must satisfy the surface equation F (x, y, z, ) = k
then we get the relation:

F (x(t), y(t), z(t)) = k

which says that the function F , when viewed as a function of the vari-
able t, is a constant. Well, here we can apply the chain rule to get:

dF

dt
=

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
+

∂F

∂z

dz

dt
=

d

dt
(k) = 0.

If we view the curve as a vector-valued function r(t) =< x(t), y(t), z(t) >
then we see that this is equivalent to:
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▽F · dr

dt
= 0.

Now,
dr

dt
is tangent to the curve r(t), and as the above equation is valid

for any curve on the surface, we see that the gradient vector of the func-
tion F at a point on the surface is perpendicular to all tangent lines to the
surface at that point. This provides the following definition:

Definition - If a surface is defined implicitly as F (x, y, z) = k then if F
is differentiable at a point P (x0, y0, z0) on the surface, with ▽F (x0, y0, z0) 6=
0 then the plane through P perpendicular to ▽F (x0, y0, z0) is called the
tangent plane to the surface at the point P .

Now, the equation for this tangent plane is:

1. For a surface defined as F (x, y, z) = k:

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y− y0) + Fz(x0, y0, z0)(z − z0) = 0

which just comes from the above discussion and our earlier equa-
tions about tangent planes.

2. For a surface defined as z = f(x, y):

z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

which is the equation we derived earlier in this chapter, but it can
also be derived from the previous equation with F (x, y, z) = f(x, y)−
z = 0.
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Example
Find the equation of the tangent plane to 8x2+y2+8z2 = 16 at (1, 2,

√
2/2).

1.2 Differentials and Approximations

If we have a surface defined as z = f(x, y) and if (x0, y0, z0) is a fixed
point on the surface, we can introduce a new coordinate system (dx, dy, dz)
parallel to the old coordinate system, but with (x0, y0, z0) as the origin. (In
other words, we just change (x, y, z) to (dx, dy, dz) and change (x0, y0, z0)
to (0, 0, 0)). If we make this change then our equation for the tangent plane
to the surface at the point (x0, y0, z0) changes from:

z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

to:

dz = fx(x0, y0)dx + fy(x0, y0)dy

which is much simpler. We can actually use this to define a quantity
dz, which we call the differential of the function f(x, y) at the point (x0, y0).
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Definition - Let z = f(x, y), where f is a differentiable function, and let
dx and dy (called the differentials of x and y) be variables. The differential of
the dependent variable, dz, also called the total differential of f and written
df(x, y), is defined as:

dz = df(x, y) = fx(x, y)dx + fy(x, y)dy = ▽f · < dx, dy >.

This differential derives from the concept of a tangent plane, and how
for a function that is differentiable at a point the tangent plane is a good
approximation of the function around that point. Consequently, we can
use the differential dz to obtain an estimate for the change in the function
∆z when we change x and y by a small amount.

Example - Use dz to approximate the change in z as (x, y) moves from
(2, 3) to (2.03, 2.98) for z = x2−5xy+y. Compare this estimate to the actual
change in value.
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1.3 Taylor Polynomials for Multivariable Functions

We won’t go too deep into Taylor polynomials for multivariable functions
because, to be honest, they just get too big and too nasty too fast, and are
best left to computers. However, the idea is basically the same as the idea
for single variable functions.

For a single variable function we can get an approximation for the func-
tion by using its first derivative and finding a tangent line:

f(x) ≈ f(x0) + f ′(x0)(x − x0)

but we can get a better approximation using an approximating parabola,
whose equation we get from using the second derivative:

f(x) ≈ f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2.

Well, the same idea applies to surfaces. We can get an approximation
with a tangent plane, but we can get a better approximation with a “tan-
gent” elliptic paraboloid. The equation is:

f(x, y) ≈ f(x0, y0) + [fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)] +
1

2
[fxx(x0, y0)(x − x0)

2 + 2fxy(x0, y0)(x − x0)(y − y0) + fyy(x0, y0)(y − y0)
2]

Now, this can extend to third or higher-order approximations, and we
can further extend this to functions of three or more variables, but as I said,
it gets messy, and is best left to a computer.
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Example - For the function f(x, y) = tan

(

x2 + y2

64

)

find the second or-

der Taylor polynomial based at (0, 0).
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