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1 The Chain Rule

1.1 The Calculus 1 Chain Rule

In calculus 1 we learned that if we have a composite of two functions,
y(x) = flg{r)) then the derivative of the composite was the derivative of
the outside function, multiplied by the derivative of the inside function:

gy = flglang' el
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1.1.1 The First Version of the Multivariable Chain Rule

If = = f(x.y) is a function of two variables, and both of those variables are
in turn functions of a single parameter 7, then we can view the function
as a function of the single parameter 7.



The idea behind this sentence is much easier to understand than it ap-
pears. For example, suppose we have the function = = sin {2 + y), with
+ = t? and y = 1%, then we could write = as a function of just ¢, namely
== sin (12 + %),

Well, = when expressed like this is just a single variable function, and
so if the functions f, r, and y are differentiable, then it makes sense to talk
about the derivative of » with respect to #. The relationship between the
derivative of = with respect to {, and the other derivatives of f, », and y

are:

Theorem
Let « = x(i) and y = y(t} be differentiable at 7, and let = = f{ux.y} be
differentiable at (r(¢). y(#)). Then = = f(x({1). y({)} is differentiable at t and
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This is the first version of the chain rule for multivariable functions.
Basically, it's just saying that the amount that = changes when we change
# is how much = changes when we change ., multiplied by how much .«
changes when we change # added to how much : changes when we change
y, multiplied by how much y changes when we change 1. Again, that's a
long sentence, but walk through it and you'll see it’s really just logic. The
proof is pretty straightforward.

Proof

If we simplify notation and let p = (Ax. Ay}, and Az = f{p+Ap)—fip)
then since [ is differentiable we have:

Az = flp+ Ap) = [(p) = V/[lp)- Ap+elp)- Ap

= [ p)Ar+ [,(plAy + e(Ap) - Ap

where ¢(p) — 0 as Ap — 0.
Now, if we divide both sides by A7 and take the imitas At — ( we get:
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which is what we want to prove.

Example
Find % given w = 2y — yix, v = cost, y = sinl.
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1.2 The Second Version of the Multivariable Chain Rule

This is a natural extension of the concepts we just discussed. Suppose that
fla.y)and xand y are themselves functions of two

we have a function z =
other parameters s and 1, say 1 = z(s.t)and y = yls.7). Then z itself can

be viewed as a function of s and t, and if everything 1s differentiable we
can takes its partial derivative with respect to s or {. The corresponding

relations are:

Theorem - Let v = x(s.1)and y = y(s.1) have first partial derivaties
at (s.1) and let = = f{x.y) be differentaible at {(r(s.t). yls. 11} Then = =
flr(s.t). y(s 1)) has first partial derivatives given by:
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Example
Find %;i given w = In (r + y) — In{r — y) with r = t¢* and y = ¢*.
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We note that we can naturally extenid these ideas to functions of three
or more dimensions.

Example

Ifw=a?+y°+ ° + 2y, where v = st, y = s ~ { and = = 5 + 2/ calculate
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1.3 The Implicit Function Theorem

We may remember from calculus I that it is possible to define a curve im-
plicitly as all points x and y that satisfy a given relation Fx.y) = 0. The
unit circle, for example, would be a curve of this form: +% 4+ y? — 1 = 0.
This is a more general concept that a function y = f{1]),in that neither of
the variables must be a function of the other one.

It is possible to talk about the slope of a curve defined in this way
around a point on the curve. We learned in calculus 1 a rather long and
laborious way of solving this type of problem. Here we'll Jearn a short

cut.
1f we have a relation F{+. y) = 0 then if we differentiate both sides with

respect to r we get:
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Now, if we note that = 1 then after some algebra we get:
.
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which makes implicit differentiation much easier.

Exaniple
For the curve defined by F{r.y) = +7 + 17y — 104" calculate %i’i as a
dr

function of x and y.
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We also get similar relations tor surfaces defined by Flu. y.z) = 0.
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