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1 The Chain Rule

1.1 The Calculus I Chain Rule

In calculus I we learned that if we have a composite of two functions,
y(x) = f(g(x)) then the derivative of the composite was the derivative of
the outside function, multiplied by the derivative of the inside function:

y′(x) = f ′(g(x))g′(x).

Example
What is the derivative of ln (sin (x2 + ex))?

1.1.1 The First Version of the Multivariable Chain Rule

If z = f(x, y) is a function of two variables, and both of those variables are
in turn functions of a single parameter t, then we can view the function z

as a function of the single parameter t.
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The idea behind this sentence is much easier to understand than it ap-
pears. For example, suppose we have the function z = sin (x + y), with
x = t2 and y = t3, then we could write z as a function of just t, namely
z = sin (t2 + t3).

Well, z when expressed like this is just a single variable function, and
so if the functions f , x, and y are differentiable, then it makes sense to talk
about the derivative of z with respect to t. The relationship between the
derivative of z with respect to t, and the other derivatives of f , x, and y

are:

Theorem
Let x = x(t) and y = y(t) be differentiable at t, and let z = f(x, y) be

differentiable at (x(t), y(t)). Then z = f(x(t), y(t)) is differentiable at t and

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

This is the first version of the chain rule for multivariable functions.
Basically, it’s just saying that the amount that z changes when we change
t is how much z changes when we change x, multiplied by how much x

changes when we change t added to how much z changes when we change
y, multiplied by how much y changes when we change t. Again, that’s a
long sentence, but walk through it and you’ll see it’s really just logic. The
proof is pretty straightforward.

Proof

If we simplify notation and let p = (∆x, ∆y), and ∆z = f(p+∆p)−f(p)
then since f is differentiable we have:

∆z = f(p + ∆p) − f(p) = ▽f(p) · ∆p + ǫ(p) · ∆p
= fx(p)∆x + fy(p)∆y + ǫ(∆p) · ∆p

where ǫ(p) → 0 as ∆p → 0.
Now, if we divide both sides by ∆t and take the limit as ∆t → 0 we get:

dz

dt
= fx(p)

dx

dt
+ fy(p)

dy

dt
.
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which is what we want to prove.

Example

Find
dw

dt
given w = x2y − y2x, x = cos t, y = sin t.

1.2 The Second Version of the Multivariable Chain Rule

This is a natural extension of the concepts we just discussed. Suppose that
we have a function z = f(x, y) and x and y are themselves functions of two
other parameters s and t, say x = x(s, t) and y = y(s, t). Then z itself can
be viewed as a function of s and t, and if everything is differentiable we
can takes its partial derivative with respect to s or t. The corresponding
relations are:

Theorem - Let x = x(s, t) and y = y(s, t) have first partial derivaties
at (s, t) and let z = f(x, y) be differentaible at (x(s, t), y(s, t)). Then z =
f(x(s, t), y(s, t)) has first partial derivatives given by:

∂z

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
and

∂z

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
.

3



Example

Find
∂w

∂t
given w = ln (x + y) − ln (x − y) with x = tes and y = est.

We note that we can naturally extend these ideas to functions of three
or more dimensions.

Example
If w = x2 + y2 + z2 + xy, where x = st, y = s− t and z = s + 2t calculate

∂w

∂t
.
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1.3 The Implicit Function Theorem

We may remember from calculus I that it is possible to define a curve im-
plicitly as all points x and y that satisfy a given relation F (x, y) = 0. The
unit circle, for example, would be a curve of this form: x2 + y2

− 1 = 0.
This is a more general concept that a function y = f(x), in that neither of
the variables must be a function of the other one.

It is possible to talk about the slope of a curve defined in this way
around a point on the curve. We learned in calculus I a rather long and
laborious way of solving this type of problem. Here we’ll learn a short
cut.

If we have a relation F (x, y) = 0 then if we differentiate both sides with
respect to x we get:

∂F

∂x

dx

dx
+

∂F

∂y

dy

dx
= 0

Now, if we note that
dx

dx
= 1 then after some algebra we get:

dy

dx
= −

∂F
∂x
∂F
∂y

which makes implicit differentiation much easier.

Example

For the curve defined by F (x, y) = x3 + x2y − 10y4 = 0 calculate
dy

dx
as

a function of x and y.
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We also get similar relations for surfaces defined by F (x, y, z) = 0.

∂z

∂x
= −

∂F
∂x
∂F
∂z

and
∂z

∂y
= −

∂F
∂y

∂F
∂z

.

Example
If F (x, y, z) = x3ey+z

−y sin (x − z) = 0 defines z implicitly as a function

of x and y, find
∂z

∂x
.
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