Math 2210 - Section 12.6 Notes

Dylan Zwick

Fall 2008

1 The Chain Rule

1.1 The Calculus I Chain Rule

In calculus I we learned that if we have a composite of two functions, $y(x)=f(g(x))$ then the derivative of the composite was the derivative of the outside function, multiplied by the derivative of the inside function:

$$
y^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example
What is the derivative of $\ln \left(\sin \left(x^{2}+e^{x}\right)\right)$?

1.1.1 The First Version of the Multivariable Chain Rule

If $z=f(x, y)$ is a function of two variables, and both of those variables are in turn functions of a single parameter t, then we can view the function z as a function of the single parameter t.

The idea behind this sentence is much easier to understand than it appears. For example, suppose we have the function $z=\sin (x+y)$, with $x=t^{2}$ and $y=t^{3}$, then we could write z as a function of just t, namely $z=\sin \left(t^{2}+t^{3}\right)$.

Well, z when expressed like this is just a single variable function, and so if the functions f, x, and y are differentiable, then it makes sense to talk about the derivative of z with respect to t. The relationship between the derivative of z with respect to t, and the other derivatives of f, x, and y are:

Theorem

Let $x=x(t)$ and $y=y(t)$ be differentiable at t, and let $z=f(x, y)$ be differentiable at $(x(t), y(t))$. Then $z=f(x(t), y(t))$ is differentiable at t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

This is the first version of the chain rule for multivariable functions. Basically, it's just saying that the amount that z changes when we change t is how much z changes when we change x, multiplied by how much x changes when we change t added to how much z changes when we change y, multiplied by how much y changes when we change t. Again, that's a long sentence, but walk through it and you'll see it's really just logic. The proof is pretty straightforward.

Proof

If we simplify notation and let $\mathbf{p}=(\Delta x, \Delta y)$, and $\Delta z=f(\mathbf{p}+\Delta \mathbf{p})-f(\mathbf{p})$ then since f is differentiable we have:

$$
\begin{aligned}
\Delta z= & f(\mathbf{p}+\Delta \mathbf{p})-f(\mathbf{p})=\nabla f(\mathbf{p}) \cdot \Delta \mathbf{p}+\epsilon(\mathbf{p}) \cdot \Delta \mathbf{p} \\
& =f_{x}(\mathbf{p}) \Delta x+f_{y}(\mathbf{p}) \Delta y+\epsilon(\Delta \mathbf{p}) \cdot \Delta \mathbf{p}
\end{aligned}
$$

where $\epsilon(\mathbf{p}) \rightarrow \mathbf{0}$ as $\Delta \mathbf{p} \rightarrow \mathbf{0}$.
Now, if we divide both sides by Δt and take the limit as $\Delta t \rightarrow 0$ we get:

$$
\frac{d z}{d t}=f_{x}(\mathbf{p}) \frac{d x}{d t}+f_{y}(\mathbf{p}) \frac{d y}{d t}
$$

which is what we want to prove.
Example
Find $\frac{d w}{d t}$ given $w=x^{2} y-y^{2} x, x=\cos t, y=\sin t$.

1.2 The Second Version of the Multivariable Chain Rule

This is a natural extension of the concepts we just discussed. Suppose that we have a function $z=f(x, y)$ and x and y are themselves functions of two other parameters s and t, say $x=x(s, t)$ and $y=y(s, t)$. Then z itself can be viewed as a function of s and t, and if everything is differentiable we can takes its partial derivative with respect to s or t. The corresponding relations are:

Theorem - Let $x=x(s, t)$ and $y=y(s, t)$ have first partial derivaties at (s, t) and let $z=f(x, y)$ be differentaible at $(x(s, t), y(s, t))$. Then $z=$ $f(x(s, t), y(s, t))$ has first partial derivatives given by:

$$
\frac{\partial z}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \text { and } \frac{\partial z}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} .
$$

Example
Find $\frac{\partial w}{\partial t}$ given $w=\ln (x+y)-\ln (x-y)$ with $x=t e^{s}$ and $y=e^{s t}$.

We note that we can naturally extend these ideas to functions of three or more dimensions.

Example
If $w=x^{2}+y^{2}+z^{2}+x y$, where $x=s t, y=s-t$ and $z=s+2 t$ calculate $\frac{\partial w}{\partial t}$.

1.3 The Implicit Function Theorem

We may remember from calculus I that it is possible to define a curve implicitly as all points x and y that satisfy a given relation $F(x, y)=0$. The unit circle, for example, would be a curve of this form: $x^{2}+y^{2}-1=0$. This is a more general concept that a function $y=f(x)$, in that neither of the variables must be a function of the other one.

It is possible to talk about the slope of a curve defined in this way around a point on the curve. We learned in calculus I a rather long and laborious way of solving this type of problem. Here we'll learn a short cut.

If we have a relation $F(x, y)=0$ then if we differentiate both sides with respect to x we get:

$$
\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

Now, if we note that $\frac{d x}{d x}=1$ then after some algebra we get:

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
$$

which makes implicit differentiation much easier.

Example

For the curve defined by $F(x, y)=x^{3}+x^{2} y-10 y^{4}=0$ calculate $\frac{d y}{d x}$ as a function of x and y.

We also get similar relations for surfaces defined by $F(x, y, z)=0$.

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \text { and } \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} .
$$

Example
If $F(x, y, z)=x^{3} e^{y+z}-y \sin (x-z)=0$ defines z implicitly as a function of x and y, find $\frac{\partial z}{\partial x}$.

