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1 Directional Derivatives and Gradients

So far we’ve learned about partial derivatives with respect to x and y, and
also the general notion of differentiability. We now want to extend these
notions so that we can deal with partial derivatives in any direction.

If we have a function f(x, y) this usually describes a surface z = f(x, y).
We can imagine this surface as a mountain. If you’re standing on a moun-
tain and I ask you what the slope is at that point, you’d have to tell me
that you can’t answer the question. The reason for this is that the slope is
different depending on which direction you walk. If you walk straight up
the mountain the slope is probably quite large, while if you walk along a
trail the slope is usually much less. So, we can’t really talk about the slope
at a point, only the slope in a given direction at that point. This is the
idea behind the directional derivative, and it’s this concept that we will
formalize in this section.

1.1 The Directional Derivative

1.1.1 Definition

If we have a function f(x, y) we can view the input (x, y) as coming from a
position vector p that points from the origin to the point (x, y). So, we can
view the function f(x, y) as a function of the vector p. Using this idea we
can represent the partial derivative with respect to x as:

fx(p) = lim
h→0

f(p + hi) − f(p)

h
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Along these lines we can define the directional derivative in any direc-
tion to be:

Definition - For a unit vector u the directional derivative of the function
f at p in the direction of u is defined as:

Du(f(p)) = lim
h→0

f(p + hu) − f(p)

h

We note something very important in this definition is that the vector
u must be a unit vector. This is often something that trips people up who
see this for the first time.

1.1.2 The Directional Derivative and the Gradient

We recall that for a function f(x, y), a.k.a. f(p), that the gradient of the
function was defined as the vector:

▽f(p) = fx(p)i + fy(p)j

Well, the nice thing about taking directional derivatives is that, as you
might expect, we don’t need to always refer back to the limit definition,
and in fact once we’ve calculated the gradient at a given point p calculat-
ing the directional derivative in any direction u is easy.

Theorem - Let f be differentiable at p. Then f has a directional deriva-
tive at p in the direction of the unit vector u = u1i + u2j and

Duf(p) = u · ▽f(p)

which can be written more explicitly as:

Duf(x, y) = u1fx(x, y) + u2fy(x, y)

We will not have time to prove this in class, but the proof is straight-
forward and is in the textbook.
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Example - Find the directional derivative of the function f(x, y) = y2 ln x
at the point (1, 4) in the direction of a = i − j.

Example - Find the directional derivative of the function f(x, y) = 2x2 sin y+
yx at the point (1, π/2) in the direction of 2i + j.
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1.1.3 Direction of Maximum Rate of Change

For a given function f at a point p a natural question we may wish to ask is
in what direction u will the directional derivative be maximized. In other
words, if you’re standing on a mountain, in what direction would you
have the steepest ascent. The answer to this can be derived pretty easily
from the earlier theorem, and it’s so straightforward that we’ll go through
it’s proof:

Duf(p) = u · ▽f(p) = ||u|||| ▽ f(p)|| cos θ = || ▽ f(p)|| cos θ

Now, cos θ is maximized (and equal to 1) when θ = 0, and minimized
(equal to -1) when θ = π. What this means is that the gradient vector
points in the direction of maximum increase, and points away from the
direction of maximum decrease. The magnitude of this maximum increase
is ||▽f(p)||, while the magnitude of the maximum decrease is −||▽f(p)||.

1.2 Level Curves and Gradients

We recall that for a function z = f(x, y) the level curves for a given con-
stant k are all the input values that have an output value k. In other words,
all points (x, y) such that f(x, y) = k. These sets of points usually form
curves. Now, we note that if we move along one of these level curves
then, by definition, f(x, y) is not changing, and so it must be that along
these level curves the directional derivative is 0. This means that the angle
between the direction of the level curve at a point and the direction of the
gradient vector at that point must be π/2. In still other words the level
curves are perpendicular to the gradient vector field.

Theorem - The gradient of f at a point P is perpendicular to the level
curve of f that goes through P .
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Example - Find the vector in the direction of most rapid increase for
the function f(x, y) = ey sin x at the point (5π/6, 0). Then find the rate of
change in that direction.

1.2.1 Higher Dimensions

We note here finally that just as functions of two variables f(x, y) give us
level curves, functions of three variables f(x, y, z) give us level surfaces,
although these can be harder to visualize for obvious reasons. As an ex-
ample, the surface defined by:

w = f(x, y, z) = x2 + y2 − z2

would have a level surface for w = 1 that would be a hyperboloid of
one sheet.

Example - Graph the level surface just described.
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