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1 Partial Derivatives

1.1 Definitions

In single variable caleulus we recall that the derivative of a function fird
atapointe ¢ R is defined to be:
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Or, in general, the derivative is a function of & inits own right and is

defined as:
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With multivariable functions evervthing becomes a little bit more dif-
ficult, and in no situation is this more clear than in the case of limits, but
our basic approach remains the same.
For a function fir. y) of two variables we define the partial derivatioe of

the function with respect to the vartable r to be:

while the partial derivative with respect to the variable y1s:
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Now, in practice this isn't very difficutt at all. If we're asked, for ex-
ample, to take the partial derivative of a function with respect to .+ we just
treat v and all other variables as if they were constants.

Example
For the function flo. y) = ¢ cos y caleudate [, (v yiand [, (v gl
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See, not so difficult at all. If you can take a derivative, you can take a
partial derivative. Here's another example.

Example
For the function [y — reos oy caleulate [ (o gt and f,{r y).
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1.2  Geometric Interpretation

We can view the function f{o. ¢ as a surface, z = [{x. y}. For a point (a.b)
in the domain D) of /{r. y) we can view the partial derivative with respect
to o at the point (o i) by intersecting the surface z == f{r. y) with the plane
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The intersection of the surface © = f{r.y) with the plane y = i gives
us a curve that we can parameterize by its r-coordinate. The slope of the
curve when o« = «a is the partial derivaiive, f, (e g1 at the point ta. b).
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1.3 Higher Order Partials

The partial derivative of a function f{r.y) with respect to either variable
is itself a multivariable function. For example, if f(z.y) = 7y + 2sinr
then f.(r. y) = 2ey + 2cosa is also a multivariable functum There's no
reason why we cannot then take partial derivatives of this newly created
function. This is the second order partial derivative, and there are four of
them for a 2 variable function, namely .., f.,, [y, and f,,.

FExample

For the function f{r. y) = rcosey calculate fop, foy. fyroand f,,.
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Note here that f,, = f,,. This is equality of mixed partial derivatives,
and it's almost alwa}s the case, especially for the functions with which
we'll be dealing. Formally, we have equality of mixed partial derivatives
in the neighborhood of a point if the first-order partial derivatives exist
and are continuous in that neighborhood. We won’t be proving this, but
it’s worth remarking upon.

1.4 Notation
There are two ways we will commonly use to represent partial derivatives;
the way we've used so far, and another way that uses the partial derivative

operator o,



We can represent the partial derivative of fic. ) with respect to r either

o ar o . .
as [ {ur.yloras 5 . Similarly for mixed partials we have:
or
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Note there’s some potential for confusion here, because, for example, if
you're akmg a mixed partial first with respect to o and then with respect
to i you've got the second situation enumerated above, where the order of
the v arzabios reads left to right on the left hand side, but right to left in the
denominator of the right hand side. What a paimn! Fortunately, as | said,
we almost always have equality of mixed partials, and so this potential
confusion rarely matters, but it's good to know about.

]



