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1 Surfaces in Three-5pace

1.1 Basic Concepts

The graph of a 3-variable equation in three dimensions is usually a surface.
We've seen examples of this already, namely, the plane: Ar + By+ (=D
and the sphere: (1~ rol (g = yo)? + (e — )P = rt

Graphing surfaces on a piece of paper {(oron a blackboard) is very hard,
bolieve me, but there are ways of visualizing these surfaces that make it
casier. Frequently, we can construct an illustrative picture by finding the
intersections of the surface with well-chosen planes. These inersections
are called crass sections. A special type of cross section is the intersection
with one of the coordinate planes (the xy, xz, or yz planes). In these cases
the cross section is called a trace.

Fxample 1
Sketch a graph of the surface in three-space defined by the equation:

2 .4 15
yo 4+t = 15




1.2 Cylinders

This is one of the more difficult things for students in catculus II to un-
derstand, because we're about to redefine (o1, more precisely, enlarge) the
term cylinder. What we think of as a cylinder from high school geometry
is actually a special type of cylinder called a right circular cylinder. The
formal definition of a cylinder is:

Definition

Let (7 be a plane curve in three-space, and let !/ be a line intersecting
that is not in the plane of €. The set of all points on lines that are parallel
to I and that intersect ' is called a cylinder.

This is a much more general definition. A right circular cylinder is the
cylinder whose plane curve is a circle, and whose line [ is perpendicular
to the plane of the associated circle. The surface we graphed in example 1
is an example of a right circular cyvlinder. Here is an example of a cylinder
that isn't a right circular cylinder:

Example 2
Graph the surface defined by the equation:

2



1.3 Quadric Surfaces

A quadric surface is a surface in three-space whose defining equation is a
second degree polynomial. The general form of a second degree polyno-
mial of three variables is:

As? b Byt C27 o Doy + Eaos + Fys+ Gr+ Hy + 1+ J =0

Now, before you get afraid, don’t panic. You won’t be expected to deal
with quadric surfaces n this type of generality. (Seriously, 2 variable J7}

The nice thing about quadric surfaces, that can be proven but that we'll
just take on trust, is that through a rotation and translation, any quadric

surface (we note that for a quadric surface we require A7 + B7 + 7 > 0)
can be transformed into one of the following two types of equation:

1. _&Ii + 1]3!}2 4 ('ﬁ“} - ]) = 1)
or
2. Aat+ Byt + =0
Now, the type of quadric surface is determined by the relative signs of
the coefficients. A list of these possibilities, along with the corresponding

equations and example graphs, is given at the end of these notes, and can
be found in vour textbook.

Example 3
Analyze the equation:

and sketch its graph.
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Example 4
Name these graphs:

1

2.
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Quadric Surfaces  If a surface is the graph in three-space of an equation of
sccond degree. it is called a guadric surface. Plane sections of a quadric surface are
COTICS.
The seneral second-degree cquation has the form
AvT ok Byt - O+ Dy - Exr oo Fyr + G + My 74§ =g

It can be shown that any such equation can be reduced. by rotation and translation
of coordinate axes. to one of the two forms

Axt By 0 T =0
or

At By [z o=

The guadric surfaces represented by the first of these equations are symmetric
with respect to the coordinate planes and the origin. They are called central
quadrics.

In Figures 7 through 12, we show six general types of quadric surfaces. Study
them carefully. The graphs were drawn by a technical artist: we do not expect that
maost of our readers will be able to duplicate them in doing the problems. A more
reasonable drawing for most people 1o make is iike the one that 15 shown in
Figure 13 with our next example.

OQUADRIC SURFACES

g g

ELLIPSOID: ~5 + =0 ¢ T = g
a b e

Plane Cross Section
xy-plane tilipse
xz-plane Ellipse
yz-plane Ellipse
Parallel to xy-planc Elfipse. pont, or emply set
Parallef to xz-plane Ellipse, point, or empty set
Parallel to yz-plane Ellipse. point, or empty set Figure 7

HYPERBOLOID OF ONE SHEET: 7+ {---
at b=

Planc Cross Section
xv-plane Ellipse
R
xz-plane Hyperbola ¥
yi-plane Hyperbola
Paratlel to xv-plane Ellipse
Paraliel to xz-plane Hyperbola
Parallel to vz-plane Hyperbola

Figure 8
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FLLIPTIC PARABOLOID: - = o

Phine

vi-plidte
vi-plane
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Phine

Cross Section

vephane
yo-plans
vI-plane
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Point
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