Math 2210 - Section 11.6 Notes

Dylan Zwick

Fall 2008

1 Lines and Tangent Lines in Three-Space

1.1 Definitions

The line is the simplest of all curves. We can describe a line by giving a fixed point $P_0 = (x_0, y_0, z_0)$ and a fixed vector $\mathbf{v} = \langle a, b, c \rangle$ called the *direction vector* for the line. The line is the set of all points P = (x, y, z) such that the vector from P_0 to P is a scalar multiple of \mathbf{v} .

We can express the line as a vector valued function of the form:

$$\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$$

where ${\bf r}_0$ and ${\bf v}$ are constant vectors. We can also represent the components of this vector valued function as linear equations:

$$x(t) = x_0 + at$$

$$y(t) = y_0 + bt$$

$$z(t) = z_0 + ct$$

where $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$ and $\mathbf{v} = \langle a, b, c \rangle$. These are called the *parametric equations* of the line through the point (x_0, y_0, z_0) with *direction numbers* $\langle a, b, c \rangle$. We note that these direction numbers are not unique. Any constant multiple $k \langle a, b, c \rangle$ would also work, as long as $k \neq 0$.

Example 1 Find parametric equations for the line through the points (2, -1, -5) and (7, -2, 3).

$$(x_0, y_0, z_0) = (z, -1, -5)$$

 $\vec{v} = (a, b, c) = (7-2, -2-(-1), 3-(-5)) = (5, -1, 8)$
 $x(t) = 2 + 5t$
 $y(t) = -1 - t$
 $z(t) = -5 + 8t$

1.2 Symmetric Equations

We note that the parameter t appears in each of the three parametric equations. We can solve for t in each of these equations to get the trio of relations:

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

This trio of equations also defined a line, where the line is given by the set of all points (x, y, z) that satisfy the above relations. Note that this assumes that none of a, b, c are zero.

Example 2 Write the symmetric equations for the line through (-2, 2, -2) and parallel to < 7, -6, 3 >.

$$\frac{x-(-2)}{7} = \frac{y-2}{-6} = \frac{z-(-2)}{3}$$

$$\frac{x+2}{7} = -\frac{y-2}{6} = \frac{z+2}{3}$$

Example 3 Find the symmetric equations for the line of intersection between the planes:

$$\frac{x+y-z=2}{\text{and}}$$

$$3x-2y+z=3$$

$$\vec{n}_1 = \langle 1, 1, -1 \rangle$$

$$\vec{n}_2 = \langle 3, -2, 1 \rangle$$

$$\vec{n}_1 = \langle 3, -2, 1 \rangle$$

$$\vec{n}_1 = \langle 3, -2, 1 \rangle$$

$$\vec{n}_2 = \begin{vmatrix} i & j & k \\ 1 & 1 - 1 \end{vmatrix} = (1(1) - (-1)(-2)) \hat{i} + (-1(3) - 1(1)) \hat{j}$$

$$+ (1(-2) - 1(3)) \hat{k}$$

$$= \langle -1, -4, -5 \rangle$$

$$+ (+1) = 3 \quad x = 8 \quad x = 8 \quad x = 8 \quad x = 8$$

$$x = 8 \quad x =$$

Tangent Lines to a Curve 1.3

If we let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ be the vector-valued function of a curve in three-space, then the tantent line to the curve at any point (f(t),g(t),h(t))has direction vector $\langle f'(t), g'(t), h'(t) \rangle$ and so the tangent line at t_0 has the equation:

$$x(t) = f(t_0) + tf'(t_0)$$

$$y(t) = g(t_0) + tg'(t_0)$$

$$z(t) = h(t_0) + th'(t_0)$$

Example 4

Find the parametric equations of the tangent line to the curve $x(t) = 2t^2$, y(t) = 4t, and $z(t) = t^3$, at time t = 1.

$$x'(t) = 4t$$
 $x'(1) = 4$
 $y'(t) = 4$ $\Rightarrow y'(1) = 4$
 $z'(t) = 3t^2$ $z'(1) = 3$

$$X(1) = 2$$

 $Y(1) = 4$
 $Z(1) = 1$

So, the parametric equations are:

$$x(t) = 2 + 4t$$

 $y(t) = 4 + 4t$
 $z(t) = 3 + t$