Math 2210 - Section 11.6 Notes

Dylan Zwick

Fall 2008

1 Lines and Tangent Lines in Three-Space

1.1 Definitions

The line is the simplest of all curves. We can describe a line by giving a fixed point $P_0 = (x_0, y_0, z_0)$ and a fixed vector $\mathbf{v} = \langle a, b, c \rangle$ called the *direction vector* for the line. The line is the set of all points P = (x, y, z) such that the vector from P_0 to P is a scalar multiple of \mathbf{v} .

We can express the line as a vector valued function of the form:

 $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$

where \mathbf{r}_0 and \mathbf{v} are constant vectors. We can also represent the components of this vector valued function as linear equations:

$$\begin{aligned} x(t) &= x_0 + at \\ y(t) &= y_0 + bt \\ z(t) &= z_0 + ct \end{aligned}$$

where $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$ and $\mathbf{v} = \langle a, b, c \rangle$. These are called the *parametric equations* of the line through the point (x_0, y_0, z_0) with *direction numbers* $\langle a, b, c \rangle$. We note that these direction numbers are not unique. Any constant multiple $k \langle a, b, c \rangle$ would also work, as long as $k \neq 0$.

Example 1 Find parametric equations for the line through the points (2, -1, -5) and (7, -2, 3).

1.2 Symmetric Equations

We note that the parameter t appears in each of the three parametric equations. We can solve for t in each of these equations to get the trio of relations:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

This trio of equations also defined a line, where the line is given by the set of all points (x, y, z) that satisfy the above relations. Note that this assumes that none of a, b, c are zero.

Example 2 Write the symmetric equations for the line through (-2, 2, -2) and parallel to < 7, -6, 3 >.

Example 3 Find the symmetric equations for the line of intersection between the planes:

$$x + y - z = 2$$

and
$$3x - 2y + z = 3$$

1.3 Tangent Lines to a Curve

If we let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ be the vector-valued function of a curve in three-space, then the tantent line to the curve at any point (f(t), g(t), h(t))has direction vector < f'(t), g'(t), h'(t) and so the tangent line at t_0 has the equation:

$$x(t) = f(t_0) + tf'(t_0)$$

$$y(t) = g(t_0) + tg'(t_0)$$

$$z(t) = h(t_0) + th'(t_0)$$

Example 4

Find the parametric equations of the tangent line to the curve $x(t) = 2t^2$, y(t) = 4t, and $z(t) = t^3$, at time t = 1.