Math 2210 - Section 11.6 Notes

Dylan Zwick

Fall 2008

1 Lines and Tangent Lines in Three-Space

1.1 Definitions

The line is the simplest of all curves. We can describe a line by giving a fixed point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and a fixed vector $\mathbf{v}=<a, b, c>$ called the direction vector for the line. The line is the set of all points $P=(x, y, z)$ such that the vector from P_{0} to P is a scalar multiple of \mathbf{v}.

We can express the line as a vector valued function of the form:

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}
$$

where \mathbf{r}_{0} and \mathbf{v} are constant vectors. We can also represent the components of this vector valued function as linear equations:

$$
\begin{aligned}
& x(t)=x_{0}+a t \\
& y(t)=y_{0}+b t \\
& z(t)=z_{0}+c t
\end{aligned}
$$

where $\mathbf{r}_{0}=<x_{0}, y_{0}, z_{0}>$ and $\mathbf{v}=<a, b, c>$. These are called the parametric equations of the line through the point $\left(x_{0}, y_{0}, z_{0}\right)$ with direction numbers $\langle a, b, c\rangle$. We note that these direction numbers are not unique. Any constant multiple $k<a, b, c>$ would also work, as long as $k \neq 0$.

Example 1 Find parametric equations for the line through the points $(2,-1,-5)$ and $(7,-2,3)$.

1.2 Symmetric Equations

We note that the parameter t appears in each of the three parametric equations. We can solve for t in each of these equations to get the trio of relations:

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

This trio of equations also defined a line, where the line is given by the set of all points (x, y, z) that satisfy the above relations. Note that this assumes that none of a, b, c are zero.

Example 2 Write the symmetric equations for the line through ($-2,2,-2$) and parallel to $<7,-6,3>$.

Example 3 Find the symmetric equations for the line of intersection between the planes:

$$
\begin{gathered}
x+y-z=2 \\
\text { and } \\
3 x-2 y+z=3
\end{gathered}
$$

1.3 Tangent Lines to a Curve

If we let $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ be the vector-valued function of a curve in three-space, then the tantent line to the curve at any point $(f(t), g(t), h(t))$ has direction vector $<f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)$ and so the tangent line at t_{0} has the equation:

$$
\begin{aligned}
& x(t)=f\left(t_{0}\right)+t f^{\prime}\left(t_{0}\right) \\
& y(t)=g\left(t_{0}\right)+t^{\prime}\left(t_{0}\right) \\
& z(t)=h\left(t_{0}\right)+t h^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Example 4
Find the parametric equations of the tangent line to the curve $x(t)=$ $2 t^{2}, y(t)=4 t$, and $z(t)=t^{3}$, at time $t=1$.

