Math 2210 - Section 11.3 Notes

Dylan Zwick

Fall 2008

1 The Dot Product

1.1 Definitions

The *dot product* is a map from two vectors that produces a scalar. The dot product is also called the *scalar product*. In n dimensional space, \mathbb{R}^n , it is defined in terms of components as:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^n u_i v_i.$$

So, in 2-dimensional space it is:

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2,$$

while in 3-dimensional space it is:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

The dot product has the following properties:

$$1. \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

$$2. \ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

3.
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

$$4. \ \mathbf{0} \cdot \mathbf{u} = 0$$

5.
$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$$

1.2 The Dot Product and Angles

For two vectors **u** and **v** the dot product relates the angle between the two vectors:

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

where θ is the angle between the vectors **u** and **v**.

Now, we note that if **u** and **v** are perpendicular (also called orthogonal) then $\theta = 90^{\circ}$.

Proof

Apply the Law of Cosines:

$$|\mathbf{v} - \mathbf{u}|^2 = |\mathbf{v}|^2 + |\mathbf{u}|^2 - 2|\mathbf{u}||\mathbf{v}|\cos\theta.$$

On the other hand using the above properties we have:

$$|\mathbf{u} - \mathbf{v}|^2 = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$

$$= \mathbf{u} \cdot (\mathbf{u} - \mathbf{v}) - \mathbf{v} \cdot (\mathbf{u} - \mathbf{v})$$

$$= \mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}$$

$$= |\mathbf{u}|^2 + |\mathbf{v}|^2 - 2\mathbf{u} \cdot \mathbf{v}.$$

Equating these two equations and performing some simple algebra we get:

$$|\mathbf{u}|^2 + |\mathbf{v}|^2 - 2|\mathbf{u}||\mathbf{v}|\cos\theta = |\mathbf{u}|^2 + |\mathbf{v}|^2 - 2\mathbf{u} \cdot \mathbf{v}$$

$$\rightarrow -2|\mathbf{u}||\mathbf{v}|\cos\theta = -2\mathbf{u} \cdot \mathbf{v}$$

$$\rightarrow \mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\theta.$$

Example 1

For what numbers c are < 2c, -8, 1 > and < 3, c, c - 2 > orthogonal?

$$\langle 2c, -8, 1\rangle \cdot \langle 3, c, c-2\rangle$$

= $6c - 8c + c - 2 = 0$
 $\Rightarrow -c - 2 = 0 \Rightarrow c = -2$

Direction Angles and Cosines 1.3

The smallest nonnegative angles between a nonzero three-dimensional vector \mathbf{a} and the basis vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} are called the direction angles of **a**. They are denoted by α , β , and γ , respectively. If **a** =< $a_1, a_2, a_3 >$ then:

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}||\mathbf{i}|} = \frac{a_1}{|\mathbf{a}|}$$
$$\cos \beta = \frac{\mathbf{a} \cdot \mathbf{j}}{|\mathbf{a}||\mathbf{j}|} = \frac{a_2}{|\mathbf{a}|}$$
$$\cos \gamma = \frac{\mathbf{a} \cdot \mathbf{k}}{|\mathbf{a}||\mathbf{k}|} = \frac{a_3}{|\mathbf{a}|}$$

We note that:

$$(\cos \alpha)^2 + (\cos \beta)^2 + (\cos \gamma)^2 = 1.$$

Example 2

Prove the above relation.

$$(os^{2}x + (os^{2}\beta + cos^{2}y) = \frac{a_{1}^{2}}{|\vec{a}|^{2}} + \frac{q_{2}^{2}}{|\vec{a}|^{2}} + \frac{a_{3}^{2}}{|\vec{a}|^{2}} + \frac{a_{3}^{2}}{|\vec{a}|^{2}} = \frac{1}{|\vec{a}|^{2}} = \frac{1}{|\vec{a}|^{2}}$$

Example 3

Find the direction cosines for $\mathbf{u} = <-1, 2, -2>$.

$$||\vec{u}|| = \sqrt{(-1)^2 + (2)^2 + (-2)^2} = \sqrt{9} = 3$$

$$\cos \alpha = -\frac{1}{3}$$

$$\cos \beta = \frac{2}{3}$$

$$\cos \gamma = -\frac{2}{3}$$

1.4 Projections

Let **u** and **v** be vectors, and let θ be the angle between them. Let **w** be the vector in the direction of **v** that has magnitude $|\mathbf{u}| \cos \theta$. Since **w** has the same direction as **v**, we know that $\mathbf{w} = c\mathbf{v}$ for some nonnegative scalar c. This constant c is:

$$c = \frac{|\mathbf{u}|}{|\mathbf{v}|}\cos\theta = \frac{|\mathbf{u}|}{|\mathbf{v}|}\frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{v}|^2}.$$

Thus,

$$\mathbf{w} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}.$$

This vector \mathbf{w} is called the *projection* of the vector \mathbf{u} onto the vector \mathbf{v} .

Example 4 Let $\mathbf{u} = <1, 6, -2>$ and $\mathbf{v} = <-3, 2, 5>$. Find the projection of \mathbf{u} onto \mathbf{v} .

We will postpone the discussion of planes until next time.