Math 2210 - Section 11.1 Notes

Dylan Zwick

Fall 2008

1 Cartesian Coordinates in Three Space

Thus far in calculus we've dealth pretty exclusively with 2-dimensional ideas and objects.

Our functions have been almost exclusively single variable maps from \mathbb{R} (the real numbers) to \mathbb{R} , and their graphs have been on \mathbb{R}^2 (the xy-plane).

Points in \mathbb{R}^2 are represented by pairs of points (x,y).

Today, we cross the void into *THE THIRD DIMENSION*!!! (Blows your mind, doesn't it...)

3-dimensional space (a.k.a. \mathbb{R}^3) is harder to draw than \mathbb{R}^2 (especially for me).

However, the basic ideas still apply. In \mathbb{R}^3 we specify a point with a triple of real coordinates, (x,y,z), which are the components in 3-space.

1.1 The Distance Formula

The first question we address is how to measure distance in \mathbb{R}^3 . In \mathbb{R}^2 we measured distance between two points using the pythagoream theorem:

In \mathbb{R}^3 the distance formula extends in the natural way:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

We can actually derive this using the Pythagorean theorem:

Example 1 - Show that the points (4,5,3), (1,7,4), and (2,4,6) are vertices of an equilateral triangle.

Distance from
$$(4,5,3)$$
 to $(1,7,4)$:
$$\sqrt{(4-1)^2 + (5-7)^2 + (3-4)^2} = \sqrt{9+4+1} = \sqrt{14}$$
Distance from $(4,5,3)$ to $(2,4,6)$:
$$\sqrt{(4-2)^2 + (5-4)^2 + (3-6)^2} = \sqrt{4+1+9} = \sqrt{14}$$
Distance from $(1,7,4)$ to $(2,4,6)$:
$$\sqrt{(1-2)^2 + (7-4)^2 + (4-6)^2} = \sqrt{1+9+4} = \sqrt{14}$$
All sides are of equal length, and so form an equilateral triangle.

1.2 Describing Shapes in \mathbb{R}^3

We can recall from analytic geometry that a circle is defined as the set of all points a distance r (the radius) from a point (x_1, y_1) (the center). The equation for this object is:

$$(x - x_1)^2 + (y - y_1)^2 = r^2$$

and for set values (x, y, r) the set of all pairs (x, y) satisfying the above equation is a circle.

Similarly in \mathbb{R}^3 we can describe a 3-dimensional sphere as the set of all points (x,y,z) that satisfy:

$$(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2 = r^2$$

for radius r and center (x, y, z).

Note that if we expand the above equation we get:

$$x^{2} + y^{2} + z^{2} + (-2x_{1})x + (-2y_{1})y + (-2z_{1})z + x_{1}^{2} + y_{1}^{2} + z_{1}^{2} - r^{2} = 0.$$

Now, this equation has the general form (noting that x_1, y_1, z_1 and r are just numbers):

$$x^2 + y^2 + z^2 + Gx + Hy + Iz + J = 0$$

where G, H, I and J are numbers. In our example:

$$G = -2x_1$$
, $H = -2y_1$, $I = -2z_1$, and $J = x_1^2 + y_1^2 + z_1^2 - r^2$.

Example 2

Complete the square to find the center and radius of the sphere given by the equation:

$$x^{2} + y^{2} + z^{2} + 2x - 6y - 10z + 34 = 0$$

$$x^{2} + y^{2} + z^{2} + 2x - 6y - 10z + 34$$

$$= (x + 1)^{2} + (y - 3)^{2} + (z - 9)^{2} - 1$$

$$So, we have:$$

$$(x + 1)^{2} + (y - 3)^{2} + (z - 9)^{2} = 1$$

$$(enter = (-1, 3, 9)$$

$$Radius = 1$$

1.3 Midpoint Rule

If $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are end points of a line segment, the midpoint $M(m_1, m_2, m_3)$ has coordinates:

$$m_1 = \frac{x_1 + x_2}{2}, m_2 = \frac{y_2 + y_1}{2}, m_3 = \frac{z_2 + z_1}{2}$$

1.4 Linear Equations

Also in \mathbb{R}^2 we have equations of the form

$$ax + by = c$$

which represents a line. Note - You may know the equation better as:

$$y = -\frac{a}{b}x + \frac{c}{d}$$

which is slope-intercept form (assuming $b \neq 0$).

The analog in \mathbb{R}^3 is not a line (although there are certainly lines in \mathbb{R}^3), but a plane. So, in \mathbb{R}^3 an equation of the form:

$$ax + by + cz = d$$
 where $a^2 + b^2 + c^2 \neq 0$

represents a plane.

Example 3 Graph
$$3x - 4y + 2z = 24$$
.

1.5 Parametric Representations of Curves in \mathbb{R}^3

I mentioned earlier that we can represent lines in \mathbb{R}^3 . This is done with a parametric representation:

$$x(t) = at + b$$
$$y(t) = dt + d$$
$$z(t) = et + f$$

In fact, in general any curve in \mathbb{R}^3 can be (locally) represented as a trio of single variable functions:

$$x = f(t)$$
$$y = g(t)$$
$$z = h(t).$$

The arc length formula transfers to \mathbb{R}^3 in the natural way:

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}}.$$

Example 4

Calculate the arc length from $1 \le t \le 2$ for the curve defined by:

$$x = i, y = \frac{2\sqrt{2}}{3}t^{\frac{3}{2}}, z = \frac{1}{2}t^{2}$$

$$\frac{dx}{dt} = 1 \quad \frac{dy}{dt} = \sqrt{2} t^{1/2} \quad \frac{dz}{dt} = t$$

$$L = \int_{1}^{2} \sqrt{1^{2} + (\sqrt{2}t^{1/2})^{2} + t^{2}} dt$$

$$= \int_{1}^{2} \sqrt{1 + 2t + t^{2}} dt$$

$$= \int_{1}^{2} (1 + t) dt$$

$$= t + t^{2} \Big|_{1}^{2} = (2 + \frac{2^{2}}{2}) - (1 + \frac{1^{2}}{2})$$

$$= 4 - \frac{3}{2} = \frac{5}{2}$$