Math 2210 - Exam 1

University of Utah

Fall 2008

Name:

1. For the vectors:

$$
\begin{gathered}
\mathbf{a}=3 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k} \\
\text { and } \\
\mathbf{b}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}
\end{gathered}
$$

calculate: (10 points)
(a) $\mathbf{a}+\mathbf{b}$ (3 points)
(b) $\mathbf{a} \cdot \mathbf{b}$ (3 points)
(c) $\mathbf{a} \times \mathbf{b}$ (4 points)
2. For the curve given by the vector equation:

$$
\mathbf{r}(t)=t \mathbf{i}+\sin t \mathbf{j}+\cos t \mathbf{k}
$$

calculate: (20 points)
(a) The velocity $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ (3 points)
(b) The acceleration $\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)$ (2 points)
(c) The parametric equations of the tangent line to the curve at $t=$ $\pi / 4$. (4 points)
(d) The symmetric equations of this tangent line. (2 points)
(e) The plane containing the point $\mathbf{r}(\pi / 4)$ that is perpendicular to the tangent line to the curve at that point. (4 points)
(f) The length of the curve from $t=0$ to $t=\pi / 4$. (4 points)
3. Find symmetric equations of the line through $(4,5,8)$ and perpendicular to the plane $3 x+5 y+2 z=30$. (5 points)
4. Make the following conversions: (10 points)
(a) Change the point given by $(6, \pi / 6,-2)$ in cylindrical coordinates to its repersentation in Cartesian (rectangular) coordinates. (1 point)
(b) Change the point given by $(4,4 \pi / 3,-8)$ in cylindrical coordinates to its representation in Cartesian (rectangular) coordinates. (1 point)
(c) Change the point givey by $(8, \pi / 4, \pi / 6)$ in spherical coordinates to its representation in Cartesian (rectangular) coordinates. (1 point)
(d) Change the point givey by $(4, \pi / 3,3 \pi / 4)$ in spherical coordinates to its representation in Cartesian (rectangular) coordinates. (1 point)
(e) Write the following Cartesian equation in cylindrical coordinate form: (2 points)

$$
x^{2}+y^{2}=9
$$

(f) Find the Cartesian equation corresponding to the following cylindrical coordinate equation: (2 points)

$$
r^{2}+z^{2}=9
$$

(g) Write the following equation in spherical coordinates: (2 points)

$$
x^{2}+y^{2}=z
$$

5. Graph and name the surface described by the quadric equation: (5 points)

$$
z=x^{2}+y^{2}
$$

