Math 2210 - Assignment 8

Dylan Zwick
Fall 2008

1 Sections 12.9 through 13.1

1.1 Section 12.9

12.9.1 Find the minimum of:

$$
f(x, y)=x^{2}+y^{2}
$$

subject to the constraint:

$$
g(x, y)=x y-3=0
$$

12.9.4 Find the minimum of:

$$
f(x, y)=x^{2}+4 x y+y^{2}
$$

subject to the constraint:

$$
x-y-6=0 .
$$

12.9.6 Find the minimum of:

$$
f(x, y, z)=4 x-2 y+3 z
$$

subject to the constraint:

$$
2 x^{2}+y^{2}-3 z=0 .
$$

12.9.8 Find the minimum distance between the origin and the plane:

$$
x+3 y-2 z=4
$$

12.9.11 Find the maximum volume of a closed rectangular box with faces parallel to the coordinate planes inscribed in the ellipsoid:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

1.2 Section 13.1

13.1.1 Let $R=\{(x, y): 1 \leq x \leq 4,0 \leq y \leq 2\}$. Evaluate $\iint_{R} f(x, y) d A$, where f is the function:

$$
f(x, y)= \begin{cases}2 & 1 \leq x<3,0 \leq y \leq 2 \\ 3 & 3 \leq x \leq 4,0 \leq y \leq 2\end{cases}
$$

13.1.4 Let $R=\{(x, y): 1 \leq x \leq 4,0 \leq y \leq 2\}$. Evaluate $\iint_{R} f(x, y) d A$, where f is the function:

$$
f(x, y)= \begin{cases}2 & 1 \leq x \leq 4,0 \leq y<1 \\ 3 & 1 \leq x<3,1 \leq y \leq 2 \\ 1 & 3 \leq x \leq 4,1 \leq y \leq 2\end{cases}
$$

13.1.6 Suppose that

$$
\begin{aligned}
& R=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 2\} \\
& R_{1}=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 1\} \\
& R_{2}=\{(x, y): 0 \leq x \leq 2,1 \leq y \leq 2\}
\end{aligned}
$$

Suppose, in addition, that:

$$
\iint_{R} f(x, y) d A=3, \iint_{R} g(x, y) d A=5, \text { and } \iint_{R_{1}} g(x, y) d A=2 .
$$

Use the properties of integrals to evaluate the integral:

$$
\iint_{R}[2 f(x, y)+5 g(x, y)] d A
$$

13.1.8 Suppose that

$$
\begin{gathered}
R=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 2\} \\
R_{1}=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 1\} \\
R_{2}=\{(x, y): 0 \leq x \leq 2,1 \leq y \leq 2\} .
\end{gathered}
$$

Suppose, in addition, that:

$$
\iint_{R} f(x, y) d A=3, \iint_{R} g(x, y) d A=5, \text { and } \iint_{R_{1}} g(x, y) d A=2 .
$$

Use the properties of integrals to evaluate the integral:

$$
\iint_{R_{1}}[2 g(x, y)+3] d A
$$

13.1.11 Suppose

$$
R=\{(x, y): 0 \leq x \leq 6,0 \leq y \leq 4\}
$$

and P is the partition of R into six equal squares by the lines:

$$
x=2, x=4, \text { and } y=2 .
$$

Approximate $\iint_{R} f(x, y) d A$ by calculating the corresponding Riemann sum $\sum_{k=1}^{6} f\left(\bar{x}_{k}, \bar{y}_{k}\right) \Delta A_{k}$, assuming that $\left(\bar{x}_{k}, \bar{y}_{k}\right)$ are the centers of the six squares.

$$
f(x, y)=x^{2}+2 y^{2}
$$

