Math 2210 - Assignment 6

Dylan Zwick

Fall 2008

1 Sections 12.4 through 12.6

1.1 Section 12.4

12.4.1 Find the gradient, $\nabla f(x, y)$, of the function f(x, y):

 $f(x,y) = x^2y + 3xy$

12.4.3 Find the gradient, $\nabla f(x, y)$, of the function f(x, y):

$$f(x,y) = xe^{xy}$$

12.4.8 Find the gradient, $\nabla f(x, y, z)$, of the function f(x, y, z):

$$f(x, y, z) = x^2y + y^2z + z^2x$$

12.4.11 Find the gradient vector of the given function at the given point **p**. Then find the equation of the tangent plane at **p**.

$$f(x,y) = x^2y - xy^2$$
, $\mathbf{p} = (-2,3)$

12.4.20 Find all points (x, y) at which the tangent plane to the graph of $z = x^3$ is horizontal.

1.2 Section 12.5

12.5.1 Find the directional derivative of *f* at the point **p** in the direction of **a**:

$$f(x,y) = x^2 y$$
; $\mathbf{p} = (1,2)$; $\mathbf{a} = 3\mathbf{i} - 4\mathbf{j}$.

12.5.6 Find the directional derivative of *f* at the point **p** in the direction of **a**:

$$f(x,y) = e^{-xy}$$
; $\mathbf{p} = (1,-1)$; $\mathbf{a} = -\mathbf{i} + \sqrt{3}\mathbf{j}$.

12.5.8 Find the directional derivative of *f* at the point **p** in the direction of **a**:

$$f(x, y, z) = x^2 + y^2 + z^2$$
; $\mathbf{p} = (1, -1, 2)$; $\mathbf{a} = \sqrt{2}\mathbf{i} - \mathbf{j} - \mathbf{k}$.

12.5.14 In what direction **u** does $f(x, y) = \sin(3x - y)$ decrease most rapidly at $\mathbf{p} = (\pi/6, \pi/4)$.

12.5.21 Find the gradient of $f(x, y, z) = \sin \sqrt{x^2 + y^2 + z^2}$. Show that the gradient always points directly toward the origin or directly away from the origin.

1.3 Section 12.6

12.6.1 Find dw/dt by using the chain rule. Express your final answer in terms of *t*.

$$w = x^2 y^3$$
; $x = t^3$, $y = t^2$.

12.6.4 Find dw/dt by using the chain rule. Express your final answer in terms of *t*.

$$w = \ln (x/y); x = \tan t, y = (\sec t)^2.$$

12.6.7 Find $\partial w / \partial t$ by using the chain rule. Express your final answer in terms of *s* and *t*.

$$w = x^2 y$$
; $x = st$, $y = s - t$.

12.6.11 Find $\partial w / \partial t$ by using the chain rule. Express your final answer in terms of *s* and *t*.

$$w = \sqrt{x^2 + y^2 + z^2}$$
; $x = \cos(st)$, $y = \sin(st)$, $z = s^2 t$.

12.6.20 Sand is pouring onto a conical pile in such a way that at a certain instant the height is 100 inches and increasing at 3 inches per minute and the base radius is 40 inches and increasing at 2 inches per minute. How fast is the volume increasing at that instant?