Math 2210 - Assignment 6

Dylan Zwick
Fall 2008

1 Sections 12.4 through 12.6

1.1 Section 12.4

12.4.1 Find the gradient, $\nabla f(x, y)$, of the function $f(x, y)$:

$$
f(x, y)=x^{2} y+3 x y
$$

12.4.3 Find the gradient, $\nabla f(x, y)$, of the function $f(x, y)$:

$$
f(x, y)=x e^{x y}
$$

12.4.8 Find the gradient, $\nabla f(x, y, z)$, of the function $f(x, y, z)$:

$$
f(x, y, z)=x^{2} y+y^{2} z+z^{2} x
$$

12.4.11 Find the gradient vector of the given function at the given point \mathbf{p}. Then find the equation of the tangent plane at \mathbf{p}.

$$
f(x, y)=x^{2} y-x y^{2}, \mathbf{p}=(-2,3)
$$

12.4.20 Find all points (x, y) at which the tangent plane to the graph of $z=x^{3}$ is horizontal.

1.2 Section 12.5

12.5.1 Find the directional derivative of f at the point \mathbf{p} in the direction of a:

$$
f(x, y)=x^{2} y ; \mathbf{p}=(1,2) ; \mathbf{a}=3 \mathbf{i}-4 \mathbf{j} .
$$

12.5.6 Find the directional derivative of f at the point \mathbf{p} in the direction of a:

$$
f(x, y)=e^{-x y} ; \mathbf{p}=(1,-1) ; \mathbf{a}=-\mathbf{i}+\sqrt{3} \mathbf{j} .
$$

12.5.8 Find the directional derivative of f at the point \mathbf{p} in the direction of a:

$$
f(x, y, z)=x^{2}+y^{2}+z^{2} ; \mathbf{p}=(1,-1,2) ; \mathbf{a}=\sqrt{2} \mathbf{i}-\mathbf{j}-\mathbf{k} .
$$

12.5.14 In what direction \mathbf{u} does $f(x, y)=\sin (3 x-y)$ decrease most rapidly at $\mathbf{p}=(\pi / 6, \pi / 4)$.
12.5.21 Find the gradient of $f(x, y, z)=\sin \sqrt{x^{2}+y^{2}+z^{2}}$. Show that the gradient always points directly toward the origin or directly away from the origin.

1.3 Section 12.6

12.6.1 Find $d w / d t$ by using the chain rule. Express your final answer in terms of t.

$$
w=x^{2} y^{3} ; x=t^{3}, y=t^{2}
$$

12.6.4 Find $d w / d t$ by using the chain rule. Express your final answer in terms of t.

$$
w=\ln (x / y) ; x=\tan t, y=(\sec t)^{2} .
$$

12.6.7 Find $\partial w / \partial t$ by using the chain rule. Express your final answer in terms of s and t.

$$
w=x^{2} y ; x=s t, y=s-t .
$$

12.6.11 Find $\partial w / \partial t$ by using the chain rule. Express your final answer in terms of s and t.

$$
w=\sqrt{x^{2}+y^{2}+z^{2}} ; x=\cos (s t), y=\sin (s t), z=s^{2} t .
$$

12.6.20 Sand is pouring onto a conical pile in such a way that at a certain instant the height is 100 inches and increasing at 3 inches per minute and the base radius is 40 inches and increasing at 2 inches per minute. How fast is the volume increasing at that instant?

