Math 2210 - Assignment 5

Dylan Zwick
Fall 2008

1 Sections 12.1 through 12.3

1.1 Section 12.1

12.1.1 Let $f(x, y)=x^{2} y+\sqrt{y}$. Find each value.

1. $f(2,1)$
2. $f(3,0)$
3. $f(1,4)$
4. $f\left(a, a^{4}\right)$
5. $f\left(1 / x, x^{4}\right)$
6. $f(2,-4)$

What is the natural domain for this function?
12.1.6 Find $F(f(t), g(t))$ if $F(x, y)=e^{x}+y^{2}$ and $f(t)=\ln t^{2}, g(t)=e^{t / 2}$.
12.1.17 Sketch the level curve $z=k$ for the indicated values of k.

$$
z=\frac{1}{2}\left(x^{2}+y^{2}\right), k=0,2,4,6,8
$$

12.1.27 Describe geometrically the domain of the function:

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}-16} .
$$

12.1.33 Describe geometrically the level surfaces for the function:

$$
f(x, y, z)=x^{2}+y^{2}+z^{2} ; k>0
$$

1.2 Section 12.2

12.2.1 Find all the partial derivatives of the function:

$$
f(x, y)=(2 x-y)^{4}
$$

12.2.5 Find all the partial derivatives of the function:

$$
f(x, y)=e^{y} \sin x
$$

12.2.13 Find all the partial derivatives of the function:

$$
f(x, y)=y \cos x^{2}+y^{2}
$$

12.2.19 Verify that:

$$
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}
$$

for the function:

$$
f(x, y)=3 e^{2 x} \cos y
$$

12.2.34 A function of two variables that satisfies Laplace's Equation,

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

is said to be harmonic. Show that the function:

$$
f(x, y)=\ln \left(4 x^{2}+4 y^{2}\right)
$$

is harmonic.

1.3 Section 12.3

12.3.1 Find the limit or state that it does not exist:

$$
\lim _{(x, y) \rightarrow(1,3)}\left(3 x^{2} y-x y^{3}\right)
$$

12.3.4 Find the limit or state that it does not exist:

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{x^{3}-3 x^{2} y+3 x y^{2}-y^{3}}{y-2 x^{2}}
$$

12.3.11 Find the limit or state that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

12.3.16 Find the limit or state that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}
$$

12.3.30 Sketch the set S and describe the boundary of the set. Finally, state whether the set is open, closed, or neither.

$$
S=\{(x, y): 1<x \leq 4\}
$$

