Math 2210 - Assignment 2

Dylan Zwick
Fall 2008

1 Sections 11.3 and 11.4

1.1 Section 11.3

11.3.1 Let $\mathbf{a}=-2 \mathbf{i}+3 \mathbf{j}, \mathbf{b}=2 \mathbf{i}-3 \mathbf{j}$, and $\mathbf{c}=-5 \mathbf{j}$. Find each of the following:

1. $2 \mathbf{a}-4 \mathbf{b}$
2. $\mathbf{a} \cdot \mathbf{b}$
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})$
4. $(-2 \mathbf{a}+3 \mathbf{b}) \cdot 5 \mathbf{c}$
5. $\|\mathbf{a}\| \mathbf{c} \cdot \mathbf{a}$
6. $\mathbf{b} \cdot \mathbf{b}-\|\mathbf{b}\|^{2}$
11.3.6 let $\mathbf{a}=<\sqrt{2}, \sqrt{2}, 0>, \mathbf{b}=<1,-1,1>$, and $\mathbf{c}=<-2,2,1>$. Find each of the following:
7. $\mathbf{a} \cdot \mathbf{c}$
8. $(\mathbf{a}-\mathbf{c}) \cdot \mathrm{b}$
9. $\mathbf{a} /\|\mathbf{a}\|$
10. $(\mathbf{b}-\mathbf{c}) \cdot \mathbf{a}$
11. $\frac{\mathbf{b} \cdot \mathbf{c}}{\|\mathbf{b}|\||\mid \mathbf{c} \|}$
12. $\mathbf{a} \cdot \mathbf{a}-\|\mathbf{a}\|^{2}$
11.3.7 For the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} from Problem 6, find the angle between each pair of vectors.
11.3.31 Find the given projection if $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{v}=2 \mathbf{i}-\mathbf{k}$, and $\mathbf{w}=$ $\mathbf{i}+5 \mathbf{j}-3 \mathbf{k}$:
$\operatorname{proj}_{\mathbf{u}} \mathbf{W}$
11.3.66 Find the equation of the plane having the given normal vector \mathbf{n} and passing through the given point P.

$$
\mathbf{n}=3 \mathbf{i}-2 \mathbf{j}-1 \mathbf{k} ; P(-2,-3,4)
$$

11.3.74 Find the distance from $(2,6,3)$ to the plane $-3 x+2 y+z=9$.

1.2 Section 11.4

11.4.1 Let $\mathbf{a}=-3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}, \mathbf{b}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$, and $\mathbf{c}=7 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$. Find each of the following:

1. $\mathbf{a} \times \mathbf{b}$
2. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})$
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})$
4. $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$
11.4.3 Find all vectors perpendicular to both of the vectors $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=-2 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$.
11.4.12 Find the equation of the plane through the points $(1,1,2),(0,0,1)$, and $(-2,-3,0)$.
11.4.15 Find the equations of the plane through $(2,5,1)$ that is parallel to the plane $x-y+2 z=4$.
