Math 2210 - Assignment 11

Dylan Zwick
Fall 2008

Section 13.8

1 Section 13.8

13.8.1 Evaluate the integral:

$$
\int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{12} r d z d r d \theta
$$

and describe the region of integration.
13.8.8 Find the volume of the solid bounded above by the sphere:

$$
x^{2}+y^{2}+z^{2}=9,
$$

below by the plane:

$$
z=0,
$$

and laterally by the cylinder:

$$
x^{2}+y^{2}=4 .
$$

13.8.11 Calculate the volume of the solid bounded above by the sphere $r^{2}+z^{2}=5$ and below by the paraboloid $r^{2}=4 z$.
13.8.21 Calculate the volume of the smaller wedge cut from the unit sphere by two planes that meet at a diameter at an angle of 30°.
13.8.23 Find the volume of the solid bounded above by the plane:

$$
z=y
$$

and below by the paraboloid

$$
z=x^{2}+y^{2} .
$$

Hint: In cylindrical coordinates the plane has equation $z=r \sin \theta$ and the paraboloid has equation $z=r^{2}$. Solve simultaneously to get the projection in the $x y$-plane.

