Math 2210 - Assignment 10

Dylan Zwick

Fall 2008

Sections 13.6 through 13.7

1 Section 13.6

13.6.1 Find the surface area of the part of the plane $3 x+4 y+6 z=12$ that is above the rectangle in the $x y$-plane with vertices $(0,0),(2,0),(2,1)$, and $(0,1)$. Make a sketch of the surface.
13.6.5 Find the surface area of the part of the cylinder $x^{2}+z^{2}=9$ that is directly over the rectangle in the $x y$-plane with vertices $(0,0),(2,0),(2,3)$, and $(0,3)$. Make a sketch of the surface.
13.6.12 Find the surface area of the part of the cylinder $x^{2}+y^{2}=a y$ inside the sphere $x^{2}+y^{2}+z^{2}=a^{2}, a>0$. Hint: Project to the $y z$-plane to get the region of integration. Make a sketch of the surface.
13.6.13 Find the surface area of the part of the saddle $a z=x^{2}-y^{2}$ inside the cylinder $x^{2}+y^{2}=a^{2}, a>0$. Make a sketch of the surface.
13.6.21 Four goats have grazing areas A, B, C and D, respectively. The first three goats are each tethered by ropes of length b, the first on a flat plane, the second on the outside of a sphere of radius a, and the third on the inside of a sphere of radius a. The fourth goat must stay inside a ring of radius b that has been dropped over a sphere of radius a. Determine formulas for A, B, C and D and arrange them in order of size. Assume that $b<a$.

2 Section 13.7

13.7.1 Evaluate the iterated integral:

$$
\int_{-3}^{7} \int_{0}^{2 x} \int_{y}^{x-1} d z d y d x
$$

13.7.5 Evaluate the iterated integral:

$$
\int_{4}^{24} \int_{0}^{24-x} \int_{0}^{24-x-y} \frac{y+z}{x} d z d y d x
$$

13.7.10 Evaluate the iterated integral:

$$
\int_{0}^{\frac{\pi}{2}} \int_{\sin 2 z}^{0} \int_{0}^{2 y z} \sin \left(\frac{x}{y}\right) d x d y d z
$$

13.7.16 Sketch the solid:

$$
S=\left\{(x, y, z): 0 \leq x \leq y^{2}, 0 \leq y \leq \sqrt{z}, 0 \leq z \leq 1\right\}
$$

and then write an iterated integral for:

$$
\iiint_{S} f(x, y, z) d V
$$

13.7.22 Calculate the volume of the solid in the first octant bounded by the elliptic cylinder $y^{2}+64 z^{2}=4$ and the plane $y=x$.

