Assignment 6

Math 1030

Due Friday, October 19th

1. Compute the total cost *per year* of the first set of expenses. Then complete the sentence: On an *annual* basis, the first set of expenses is _% of the second set of expenses. (Taken from problems 26, 27, and 29 of section 4A from the textbook).

(a) Marcus spends an average of \$4 a day on iTunes, his rent is \$350
per month.
Annual iTunes spending - (#4/day) (365 day/year) Annual rent - (#350/month) (12 months/year) = #4,200/year (#1,460/year) × 1007, = 34.87) (b) Sheryl buys a \$9 pack of cigarettes each week and spends \$30 a
= # 1,4 60/year
Amnual rent - (1) 50/month (12 months/year) = 44,200/year
11,460/year) × 1007, = [34.87]
(b) Sheryl buys a \$9 pack of cigarettes each week and spends \$30 a
month on dry cleaning.
Annual cigarette spending - (#9/week) (52 weeks/year)
= \$468/year
Annual cigarette spending - (#9/week) (52 weeks/year) = #468/year Annual laundry spending = (#30/month) (12 months/year) (a) Vern drinks three 6-packs of beer each week at a cost of \$7 each
(# 360/year) x100% = 130% [130%]
(c) Vern drinks three 6-packs of beer each week at a cost of \$7 each
and spends \$700 per year on his textbooks.
Annual beer spending - 3x (\$7/week) (52 weeks)
1!!1! = (C/Vear)
11,092/year 1156-17
700/year = [1567]

2. You currently drive 250 miles per week in a car that gest 21 miles per gallon of gas. You are considering buying a new fuel-efficient car for \$16,000 (after trade-in on your current car) that gets 45 miles per gallon. Insurance premiums for the new and old car are \$800 and \$400 per year, respectively. You anticipate spending \$1500 per year on repairs for the old car and having no repairs on the new car. Assume gas costs \$3.50 per gallon. Over a five-year period, is it less expensive to keep your old car or buy the new car? (Problem 51 from section 4A of the textbook.)

Cost of old car:

3. You could take a 15-week, three-credit college course, which requires 10 hours per week of your time and costs \$500 per credit-hour of tuition. Or during those hours you could have a job paying \$10 per hour. What is the net cost of the class compred to working? Given that the average college graduate earns nearly \$20,000 per year more than a high school graduate, is it a worthwhile expense? (Problem 47 from section 4A of the textbook.)

4. Yancy invests \$5000 in an account that earns simple interest at an annual rate of 5% per year. Samantha invests \$5000 in a savings account with annual compounding at a rate of 5% per year. Make a table that shows the performance of both accounts for 5 years. The table should list the amount of interest earned each year and the balance in each account. Compare the balances after 5 years. (Problem 45 from section 4B of the textbook.)

	Simple Interest	(ompound Interest
Year I	Interest: #5,000 x 57. = #290 Total = #5,000+#250 = #5,250	Interest: \$5,000x57. = #250 Total = #5,250
Year Z	Interest = #5,000 x5% = #250 Total = #5,250 + 4250 = #5,500	Interest: #5,250 x 57. = #262.50 Total = #5,250+#262.50 = #5,512.50
Year 3	Interest = #250 total = #5,750	Interest: \$5,521-50 x57. = \$75.63 Total = \$5,512-50+\$275.63 = \$5,788-13
Year 4	Interest = #250 Total = \$6,000	Interest: \$5,788.13 x 5% = \$289.41 Total = \$5,788-13 + \$289.41 = \$6,077.54
Year S	Total = [#6,250]	Interest: \$6,077.54 x57/ = \$303.88 - otal = \$6,077.54 + \$303.88 = \$6,381.42
Make #	6381-42-#6250 3 = #131-42 MOR with	compound interest

- 5. Use the compound interest formula to determine the accumulated balance after the stated period. Assume that interest is compounded annually. (Problems 47-52 from section 4B of the textbook.)
 - (a) \$3000 is invested at an APR of 3% for 10 years.

$$A = P \times (1 + APR)^{\Upsilon}$$

 $A = $3000 \times (1.03)^{10} = $49,031.75$

(b) \$10,000 is invested at an APR of 5% for 20 years.

$$A = \frac{10,000 \times (1+.05)^{20}}{26,533}$$

(c) \$40,000 is invested at an APR of 7% for 25 years.

$$A = \# 40,000 \times (1+.07)^{25}$$

$$= \# 217,097 \quad (wow!)$$

(d) \$3000 is invested at an APR of 4% for 12 years.

(e) \$8000 is invested at an APR of 6% for 25 years.

$$A = \# 8000 \times (1.06)^{25}$$

$$= \# 34,335.007$$

(f) \$40,000 is invested at an APR of 8.5% for 30 years.

$$A = $440,000 \times (1.085)^{30}$$
$$= $462,330$$

- 6. Use the compound interest formula for compounding more than once a year to determine the accumulated balance after the stated period. (Problems 53 through 60 from section 4B of the textbook.)
 - (a) A \$4000 deposit at an APR of 3.5% with monthly compounding for 10 years.

) years.

$$A = p \left(1 + \frac{APR}{n} \right)^{(nY)}$$

$$= $44000 \left(1 + \frac{.035}{12} \right)^{(12\times10)} = $45,673.38$$

(b) A \$2000 deposit at an APR of 3% with daily compounding for 5 years.

ears.
$$A = \#2000 \left(1 + \frac{.03}{365}\right)^{(365 \times 5)}$$

$$= \#2,323.65$$

(c) A \$15,000 deposit at an APR of 5.6% with quarterly compounding for 20 years.

$$A = \#15,000 \left(1 + \frac{.056}{4}\right)^{(20\times4)}$$

$$= \#45,617.10$$

(d) A \$10,000 deposit at an APR of 2.75% with montly compounding for 5 years.

$$A = #10,000(1 + \frac{-0275}{12})^{(12 \times 5)}$$

$$= #11,472.21$$

A =
$$$2000 (1 + \frac{.07}{12})^{(12 \times 15)}$$

= $$5,697.89$

years.
$$A = $3000 \left(1 + \frac{.05}{365}\right)^{(365 \times 10)}$$

$$= $4,945. $4,945.99$$

g for 30 years.
$$A = \# 25,000 \left(1 + \frac{.062}{4}\right)^{(4 \times 30)}$$

$$= \# 158,318.38$$

g for 15 years.

$$A = \frac{15,000(1 + \frac{-078}{12})}{(12 \times 15)}$$

$$= \frac{48,147.25}{}$$

- 7. Find the annual percentage yield (APY) for the banks described below. (Problems 61 through 64 from section 4B of the textbook.)
 - (a) A bank offers an APR of 3.5% compounded daily.

$$APY = \left[\left(1 + \frac{APR}{n} \right)^n - 1 \right] \times 100\%$$

$$= \left[\left(1 + \frac{-035}{365} \right)^{365} - 1 \right] \times 100\% = 3.56\%$$

(b) A bank offers an APR of 4.5% compounded monthly.

$$APY = \left[\left(1 + \frac{.045}{12} \right)^{12} - 1 \right] \times 100\%$$

$$= \left[\frac{4.59\%}{12} \right]$$

(c) A bank offers an APR of 4.25% compounded monthly.

$$APY = \left[\left(1 + \frac{-0425}{12} \right)^{12} - 1 \right] \times 1007.$$

(d) A bank offers an APR of 2.25% compounded quarterly.

$$APY = \left[\left(1 + \frac{-0225}{4} \right)^4 - 1 \right] \times 100\%$$

$$= \left[2.27\% \right]$$

- 8. Use the compound interest formula for continuous compounding to determine the accumulated balance after 1 year, 5 years, and 20 years. Also find the APY for each account. (Problems 65 through 67 of section 4B of the textbook.)
 - (a) A \$3000 desposit in an account with an APR of 4%.

$$A = P \times e^{(APR \times Y)} \quad APY = \left[e^{(APR)}\right] \times 1007$$

$$A = \frac{13000 \times e^{(.04 \times 1)}}{13,122.43} = \frac{13000 \times e^{(.04 \times 5)}}{13,664.21} = \frac{20 \times e^{(.04 \times 20)}}{16,676.62}$$
(b) A \$2000 deposit in an account with an APR of 5%.

| year |
$$S$$
 years | 20 years | $A = \#2000 \times e^{(.05 \times 5)}$ | $A = \#2000 \times e^{(.05 \times 5)}$ | $A = \#2000 \times e^{(.05 \times 10)}$ | $A = \#2000 \times e^{(.05 \times 10)}$

$$A = \#10,000 \times e^{(.08 \times 1)} A = \#10,000 \times e^{(.08 \times 5)} A = \#10,000 \times e^{(.08 \times 5)}$$

9. At age 35 you start saving for retirement. If your investment plan pays an APR of 6% and you want to have \$2 million when you retire in 30 years, how much should you deposit monthly? (Problem 54 from section 4C of the textbook

om section 4C of the textbook.)
$$A = PMT \times \frac{\left[\left(1 + \frac{APR}{n} \right)^{h} \right]^{-1}}{\left(\frac{APR}{n} \right)}$$

$$PMT = \frac{\#2,000,000}{\left[\left(1+\frac{-06}{12}\right)^{(12730)}-1\right]} = \frac{\#1,991-01/month}{\left(\frac{-06}{12}\right)}$$

- 10. Compute the total and annual return of the described investments. (Problems 59 through 61 of the textbook).
 - (a) Five years after buying 100 shares of XYZ stock you \$60 per share, you sell the stock for \$9400.

Share, you self the stock for \$7400.

Total Return =
$$\frac{\#9400 - \#60 \times 100}{\#60 \times 100} = [-5667]$$

Annual Return = $(\frac{\#9400}{\#60 \times 100})^{(1/5)} - 1 = [-0939]$

(b) You pay \$8000 for a municipal bond. When it matures after 20

years, you receive \$12,500.

(c) Twenty years after purchasing shares in a mutual fund for \$6500 you sell them for \$11,300.