
Finite Difference Methods for Parabolic
Equations

In this note, we will briefly describe some highlights of finite difference meth-
ods for parabolic equations. As with any time evolution equations, the
paramount concern for finite difference schemes is the issue of stability, where
we will focus most of our attentions.
The obvious model equation to consider is the standard heat equation:

ut = uxx, 0 < x < 1, t > 0, (1)

with initial condition
u(x, 0) = u0(x), (2)

and boundary conditions u(0, t) = φ0(t) and u(1, t) = φ1(t), for t > 0. We
use the notation un

j ≈ u(xj, tn), where xj = j∆x and tn = n∆t. If we use
vector notations, a finite difference scheme can be represented as

un+1 = Aun + kn. (3)

The first question is the order of the method, namely the order of the local
truncation error (LTE), in terms of ∆t and ∆x. If you substitute the exact
solution into Eq.(3), you will need to divide by a factor ∆t to get the correct
order of LTE. To avoid confusion and make it easy to remember, it’s probably
more convenient to start the finite difference equation in the form that closely
matches the original equation, such as

un+1
j − un

j

∆t
=

un
j+1 − 2un

j + un
j−1

(∆x)2
. (4)

It is clear that the finite difference equation approximates the differential
equation. Whether the finite difference solution approximates the differential
equation solution is a different matter! If we work on the finite difference
equation in this form, then there should be no ambiguity in the order of
the LTE when the Taylor expansions are carried out and the differential
equations are used.
To focus on stability of the finite difference equation, we can imagine two
different solutions u and v of the same finite difference equation (due to
different initial data) and study the evolution of the difference e = u− v. It
is readily found from Eq.(3) that

en+1 = Aen. (5)

The source term and boundary terms are eliminated from the consideration
if we follow this direction (this is why we made the homogeneous assumption
in stability analysis). Now it is obvious that the stability rests on the norm
of the matrix A.



As it turns out, as always, estimating the norm of a matrix is no easy task,
especially when A is not explicitly given (think of the implicit methods, where
A = T−1B for some T ). In the textbook a point is made that the 2-norm
is equivalent to the spectral radius only if the matrix A is normal (p.288).
This is an important point to keep in mind, though in most cases we should
just use the Fourier analysis as the first choice.
There are two ways to go for the Fourier approach. In the first way, you can
just pretend that the finite difference solution has the form

un
j = λneikj∆x, (6)

and ask what λ will make it indeed a solution. As we showed in class, very
often we end up with a simple expression and our job is to analyze what
makes λ to satisfy

|λ| ≤ 1. (7)

This will give you the stability condition (in l2).
The second way is more general and easy to accept (unlike the previous one,
simple though it is, you wonder how general the assumption is). We treat
the finite difference solution uj as the Fourier coefficients for a function û(θ):

uj =
1

2π

∫ 2π

0
û(θ)eijθdθ. (8)

with the understanding that the Parsavel’s relation holds:

||u||2 = ||û(θ)||2. (9)

Therefore, in order to have ||un+1||2 ≤ ||un||2, it is sufficient to have ||ûn+1||2 ≤
||ûn||2. So the analysis is to find the relation between ûn+1 and ûn and then
bound the 2-norm.
The bottom line is that Fourier transforms diagonalize the matrix operator
so it becomes trivial to compute 2-norms.
When will we need to go back to estimate the norm of matrix A? Consider
the problem of an unusual boundary condition, such as αu + βux = 0. Can
we still use Fourier analysis? If not, we will need to study how the matrix is
modified (only the first or last row) depending on your discretization of the
boundary condition.
Finally it comes to the Lax equivalence theorem. It roughly says that

consistency + stability = convergence (10)

This settles our question brought up earlier about the difference between
approximation of equations and approximation of solutions. As we see it,
the numerical stability of a particular scheme plays the central role.
Another topic touched upon in class is the maximum principle. This is an
important result and tool in classic parabolic PDE analysis but we are not
sure if it will be carried over to our numerical solutions (even they converge).



It turns out that only few schemes preserve this property and there is a heavy
price to pay (a restriction on µ), if you want this property in the solution.
As an example, consider the variable coefficient problem:

ut = (a(x)ux)x (11)

where a(x) ≥ a0 > 0. Denote aj = a(xj), consider the following two schemes:

un+1
j − un

j

∆t
=

aj+1/2(u
n
j+1 − un

j )− aj−1/2(u
n
j − un

j−1)

(∆x)2
, (12)

and

un+1
j − un

j

∆t
= aj

un
j+1 − 2un

j + un
j−1

(∆x)2
+

aj+1 − aj−1

2∆x

un
j+1 − un

j−1

2∆x
. (13)

We will see that the first one can easily satisfy the maximum principle if we
require

maxj aj+1/2∆t

(∆x)2
≤ 1

2
(14)
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