
Chapter 6

Credit Risk and Credit
Derivatives

In today’s business world, a credit event, such as a company’s default or credit
rating change (upgrade or downgrade), can lead to various consequences reaching
all the way to unexpected remote corners of the world, and this is probably the work
of so-called credit derivatives. One of the early motivations for credit derivatives
is the need to address potential defaults of a company when the investor had a
high stake in the company, probably through owning its corporate bonds, or in a
swap contract. In this case a contract called credit default swap (CDS) is often
used to protect the investor’s interest and hedge the credit risk. But early financial
innovators at that time never imagined the extensions of the idea and development
of various financial products. They couldn’t conceive today’s widespread use of
credit products as vehicles to speculate and make all kinds of bets on a wide range
of events.
The presence of the credit risk is felt everyday on the financial markets, and it can
be explained by the fact that corporate and many government bonds are traded
at lower prices, or higher yields, compared to the US treasury bonds (assumed
to be default-free) with the similar terms. The extra discount, or promised extra
return, is a compensation for the risk taken by the investor: as there is a possibility
that the investors may not get all their money back, and history is never short of
catastrophes and they continue to appear in all different ways.

6.1 Credit Ratings of Companies

The creditworthiness of a company is assessed by one of those rating agencies,
such as Moody’s, S&P, and Fitch. Ratings are assigned by these rating agencies
to corporate bonds as to help investors to estimate the likelihood of default, or a
measure of the credit risk, over certain time period. Different rating agencies use
different scales:

• Moody’s: Aaa, Aa, A, Baa, Ba, ...
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• S&P: AAA, AA, A, BBB, BB, ...

• Fitch’s: similar to S&P.

Quite often an agent is under constraints set forth by the management in terms of
what kind of corporate bonds he/she can purchase, such as the investment grades
which usually require a Baa or higher rating. Central to all the ratings is the
estimate of default probability, while each rating agency has its own method of
estimation and the algorithms always take into account of a) historical data, and
b) expectations of the company future businesses.

6.2 Default Probability and Survival Probability

The mathematical question to describe credit is how to quantify the risk of a default
of a particular entity. We introduce the default probability of a company by time t
as Q(t), and the survival probability by t as V (t) = 1−Q(t). These are cumulative
probabilities, and if we ask for the default probability over certain ∆t we would
have to look into the density. It is important to distinguish the conditional and
unconditional probabilities in this case: the probability in question should be the
probability of default over the next period of time (t, t + ∆t) if the company has
survived until t. In another word, we need

P [default over (t, t+ ∆t), given no default by t]

=
P [default over (t, t+ ∆t)]

P [survival until t]

=
V (t)− V (t+ ∆t)

V (t)

This should be proportional to ∆t and it is natural to introduce a rate. In this
case we have

λ(t) = − 1

V

dV

dt

as the hazard rate, or the default intensity. Intuitively speaking, the hazard
rate measures the default rate in the next short period of time, given the survival
for the time being. Alternatively, the survival probability and cumulative default
probability can be written as

V (t) = e−
R t
0 λ(s) ds = e−λ̄(t)·t

where

λ̄(t) =
1

t

∫ t

0

λ(s) ds

is the average hazard rate over the period (0, t).
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6.3 Recovery Rates and Loss Distribution

When a company defaults, usually not all is lost so there is the question of how
much can be recovered. The recovery rate (RR) gives the percentage of the
face value the bond holders receive in the event of a default, and naturally it is
uncertain so a random variable R is introduced to describe this percentage. Many
studies have been devoted to this subject and there are some estimates based on
historical data, and one of them, a Moody’s statistics gives

RR ≈ 59.1− 8.356×Default Rate

One major question in this area is the correlation between the default probability
and the recovery rate. We can argue that if defaults are more likely to occur then
the loss can be potentially high, resulting in a low recovery. This claim that default
probabilities and recovery rates are negatively correlated is actually supported by
some empirical studies.
The loss distribution is a concept widely used in actuarial industry, as well as in
defaultable bond pricing. It can have different specific definitions but in essence
it describes the information combining default probabilities and the recovery rates
given a default occurring. A generic notion is the probability of losing an amount
lower than certain value by certain time. It is also similar and related to the concept
of Value at Risk (VaR), which describes the threshold loss value in a portfolio with
a probability p.

6.4 Estimation of Hazard Rates from the Market

Here is a toy example to illustrate the principle: suppose there is a 5-year zero-
coupon corporate bond with face value $1 issued by a company that matures in
5 years, but the company may default at time τ within the next 5 years. In
that case the company will not be able to meet its obligation of fully paying back
the principal amount. We assume that the distribution of τ is an exponential
distribution with parameter λ, that is

Q(5) = P [τ ≤ 5] = 1− e−5λ.

Suppose the risk-free interest rate (annualized) for the 5-year investment is r, and
there is no payment in case of a default (R = 0), the discounted expected payoff
at T = 5 is therefore

P = P [τ > 5] · e−5r + P [τ ≤ 5] · 0 = e−5(r+λ).

The yield of this bond is therefore y = r + λ, and we can see that the extra yield
in addition to the risk-free rate is due to the constant intensity λ.
Now let us generalize this notion. Surely we cannot assume the default time to
be an exponentially distributed random variable with a constant λ. However,
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for a given maturity T , we have the price of a defaultable bond in terms of an
expectation of discounted payoff

P = e−yT = V (T ) · e−rT +Q(T )Re−rT

Assuming small r and λ̄, we have an estimate

λ̄(T ) ≈ y − r
1−R

=
s

1−R

with s obviously defined as the yield spread. Suppose we have several bonds with
maturities T1, T2, . . . , Tn. For each one we can infer λ̄(T ) from above so it is possible
to fit a time-dependent function λ(t) so that λ̄ for those T values are matched.
This is a boot-strapping procedure often used in these data analysis.

6.5 Real-World vs Risk-Neutral Probabilities

The default probability information gathered from the bond yields is necessarily
risk-neutral as they are inferred from a market which is assumed to be complete.
On the other hand, we can also estimate default probabilities from historical data
sets, and derive so-called historical default probabilities. Typically the risk-neutral
probabilities are higher than the historical probabilities of the same term, and the
difference is called the ”excess return”. There are some explanations:

1. Corporate bonds are relatively illiquid so they are often sold at prices even
lower relatively to what is implied from the actual expected loss;

2. Investors care particularly about those depression scenarios;

3. Defaults are often correlated: if one is triggered, it is more likely the others
would follow.

6.6 Reduced Form Models

Here the focus is on modeling the default intensity λ, for which λ∆t can be viewed
as the likelihood of default over a next short period (t, t + ∆t), given that the
company still survives at t. It is obvious that the intensity λ must be time-
dependent to develop a particular default term structure. Not only λ should be
time varying, but also it is most likely stochastic, thus opening the door for many
models reflecting the forecast for the credit future of a particular entity, such
as one or multi factors, mean reversion, and so on. In developing a practical
model, a proper balance should be maintained between analytic tractability and
comprehensive description of the phenomena.

4



6.7 Structural Models

The other type of models, pioneered by Merton (1973), is called structural model,
and these models are based on the fundamental argument that a default is triggered
when the company’s total asset fails to meet the company’s total liability. In
another word, the total asset value of the company reached a level that is blow its
total liability. Here we need to understand a basic corporate financing principle:
a company usually has two ways raising capital - issuing debt or equity, if it needs
to expand its business. The bond (debt) holders are capped at the gain, but they
have the priority in collecting the remaining asset if the company goes bust.
Merton’s original argument is the following. Let V be the total asset of the com-
pany and B the outstanding liability, and they are both time dependent. At
maturity T ,

• If V > B, the bond holders receive their promised amount B, while the
equity holders take away the rest (V −B);

• If V ≤ B, which is the case where the company would fail its obligations,
the bond holders take everything that is left (V ), and the stock holders get
nothing.

The payment received by the stock holders is therefore exactly the same payoff of
a call option

(V −B)+ =

{
V −B, V > B

0, V ≤ B

So for stock holders, they in fact have a call option on the value of the company
(V ), stuck at the face value of the debt (B), so the value of the stock E(t) at t < T
can be expressed by the Black-Scholes formula (with a proper probability measure
and a volatility that measures that future fluctuation of the company’s value). At
any time t < T , the value of the company is divided between the bond holders
and the stock holders, meaning V (t) = E(t) +B(t), so the value of the defaultable
bond at t is

B(t) = V (t)− e−r(T−t)E
[
(V (T )−B)+|F(t)

]
This is one of the first clean expressions for modeling defautable bonds, and the
dependence on the volatility as required in the Black-Scholes formula highlights
the risk in the company’s credit conditions.
One particular issue in using the Black-Scholes formula in the above valuation is
the choice of volatility. In this case it is the volatility of the asset value V (t).
Where do we go to find that information? Suppose that the stock is traded and
we observe some volatility of the stock price σE, but it is the volatility of the stock
price, not the volatility of the asset σV . Fortunately, both the change in stock
price and the change in asset value are driven by the same factor dW , we can use
Ito’s formula to conclude

σEE =
∂E

∂V
σV V = N(d1(σV ))σV V,
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which is an equation for the unknown σV .
An obvious weakness of the model in this form is that defaults are allowed only
at the maturity T . The extension of this model is to allow defaults to happen at
the first time that V falls below the threshold. This leads to an application of the
famous “first exit” problem. Let V (t) be the value of the asset at time t, the first
time V falls below B

τ = min {s > 0 : V (s) ≤ B}
gives the default time, and the probability of default before t

Q(t) = P [τ < t]

as a function of time is the outcome of the model that can be calibrated to the
market implied default probabilities. The problem becomes a calibration problem
for the process X(t) = V (t)−B, that is the determination of the model parameters.
In the case where X is a Brownian motion or Geometric Brownian motion, there
are well-known results based on the reflection principle. We illustrate this approach
by building a series of processes from the very basic.

1. X(t) = W (t), with barrier m > 0. We define the exit time

τm = min {t : X(t) ≥ m}

For any w > 0, the reflection principle gives

P [τm ≤ t,W (t) ≤ w] = P [W (t) ≥ 2m− w]

Therefore,

P [τm ≤ t] = P [τm ≤ t,W (t) ≤ m] + P [τm ≤ t,W (t) > m]

= 2P [W (t) ≥ m]

=
2√
2πt

∫ ∞
m

e−
x2

2t dx = 2

(
1−N

(
m√
t

))
.

2. X(t) = W (t), m ≤ 0. We define

τm = min {t : X(t) ≤ m}

A similar calculation based on symmetry gives

P [τm ≤ t] = 2

(
1−N

(
− m√

t

))
.

3. X(t) = σW (t), m > 0.

τm = min {t : X(t) ≥ m}

We have

P [τm ≤ t] = 2

(
1−N

(
m

σ
√
t

))
.
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4. X(t) = α+σW (t) where α is a constant, we note that X(t) ≥ m is equivalent
to W (t) ≥ m−α

σ
so

P [τm ≤ t] = 2

(
1−N

(
|m− α|
σ
√
t

))
.

5. X(t) = αt + σW (t) with constant α > 0 and σ. This turns out to be a
substantial problem that involves a change of measure:

W̃ (t) = W (t) +
αt

σ

The calculation follows the change of measure formula

P [τm ≤ t] = E
[
I{τm≤t}

]
= Ẽ

[
1

Z
I{τm≤t}

]

6.8 Adjusting Derivative Valuations for Coun-

terparty Default Risk

When you entered a derivative contract with some counterparty, you may wonder
what would happen if the counterparty is out of business. In case the derivative
has negative value to you, there is practically no impact as the liquidators or the
company that takes over will inherit that right and you just need to change the
name of the payee when it comes to the payoff. It is going to be a problem,
however, when the derivative has positive value to you as an asset, but suddenly
nobody is ready to make that payoff to you. This is considered a counterparty
credit loss and an adjustment is called for when you try to price it properly.
The principle in adjustment is that we should exclude the present value of the
expected loss from the price. Consider the following example, where a derivative
with expiration T without counterparty risk is quoted at f0. It is assumed that
defaults are possible at t1, t2, . . . , tn = T , with unconditional default probabilities
q1, q2, . . . , qn accordingly. If a default occurs at ti, the loss would be fi(1 − R)
where fi is the value of the derivative at ti. Since the default probability at ti is qi,
and the discounted expected value of fi is f0, the total expected loss is therefore

f0

n∑
i=1

qi(1−R)

so the adjust price of the derivative should be

f ∗0 = f0 − f0

n∑
i=1

qi(1−R)

If we can find a bond issued by this counterparty with the same maturity and its
price is

B∗0 = B0(1−
∑

qi(1−R)), B0 = e−yT , B∗0 = e−y
∗T
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where y and y∗ are the bond yields of the respective risk-free and defaultable bonds,
we can write

f ∗0 = f0e
−(y∗−y)T

Here is another example involving counterpart risk: a currency swap between a
financial institution (A) and a counterparty (B) that is subject to default risk. In
this currency swap, A pays a fixed interest rate rA on a principal PA paid in dollars
to B, and receives a fixed rate rB on principal PB paid in Euro from B. Suppose
that the swap is to last till T and interests payments are exchanged once a year at
t1, t2, . . . , tN = T . The value of the swap at ti is

PA(1 + rA)− PB(1 + rB)S(ti)

where S(ti) is the dollar-Euro exchange rate at ti. The principals are set up so
that PA/PB = S(0). The possible loss is therefore

max (PA(1 + rA)− PB(1 + rB)S(ti), 0) = PB(1+rB) max

(
PA(1 + rA)

PB(1 + rB)
− S(ti), 0

)
which is the payoff of a put option on S. The present value vi of the loss at ti
can be expressed in terms of the Black-Scholes formula, and total expected loss is∑N

i=1 qivi.

6.9 Some Typical Credit Derivatives

• Credit Default Swaps (CDS)

The most widely used type of credit derivatives is the credit default swap
(CDS). It works as follows: it is a swap contract in which one party A pays
a premium in terms of a rate to the other party (B) on a scheduled time
table until the maturity T . In the event of a default of the specified reference
entity, party A stops the premium payments and receives the incurred loss
amount from party B.

For a CDS, the issues involved are obviously pricing and hedging to begin
with. The main parameter in the contract is the premium rate, which is more
or less the yield spread of a bond with that maturity issued by this reference
entity. This rate s is specified when the contract is entered and stays fixed
for the rest of the swap life, and it is set up so that the initial value of the
swap is zero. As market conditions change, the prevailing spread s would
change so the value of the swap can be positive or negative. The valuation
of the swap is similar to interest rate swaps, except we have to take into
considerations of the default at all these times.

The valuation of a CDS is quite simple. On one side that pays the premium,
the present value of all the payments is

n∑
i=1

V (ti)sD(ti),
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here s is the premium rate, D(ti) is the discount factor for payments received
at ti, and V (ti) is the survival probability for ti. The present value of the
other side is

n∑
i=1

qi(1−R)D(ti).

here we assume the principal $1, with payments made annually, and a recov-
ery rate R. The rate s that makes the contract value zero is

s =

∑n
i=1 qi(1−R)D(ti)∑n
i=1 V (ti)D(ti)

• Collaterized Default Obligations (CDO)

These are the notorious structured notes in which a collection of defaultable
bonds/notes are structured according to a detailed schedule, as to specify
where to send the income generated by the bonds in terms of a set of tranches.
The senior tranches get their first pick of the returns, and the junior tranches
will only get the leftover. The trick is the use of some high quality bonds
to cover the problematic assets in the portfolio, therefore to sell it as a high
rating security. In the following example we will show how this simple trick
can mislead the public into believing that the investment is a sound choice.

6.10 First-to-default (first-to-exit) models

In many CDS/CDO modeling, the first-to-default, or second-to-default issues would
arise. Suppose τ1, τ2, . . . , τm are default times of companies 1, 2, . . . ,m, each with
a survival probability

pi = P [τi > t]

How do we determine the distribution of the first-to-default, or first-to-exit time
τ = mini {τi}?
In the case all the company defaults are independent from each other,

P[τ > t] = P [τ1 > t, τ2 > t, . . . , τm > t]

= P[τ1 > t] · P[τ1 > t] · · ·P[τm > t]

= p1 · p2 · · · pm

This simplifies the problem quite a bit, and it can explain the popularity with
such intensity-based models. However, this convenience in practice effectively en-
courages many practitioners to assume this all-too-important, but not necessary
realistic, independence assumption. This oversimplifyication could be devastat-
ing in many applications.
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6.11 Copula Model

Now that we realized that the independence assumption is not a reasonable one,
and the correlation factor is often a major issue in many structured products
such as CDOs, it becomes clear to practitioners that the dominant issue is to
model correlations. The copula model makes an often oversimplified attempt to
address this issue. It is observed that the random variable τ can be transformed
to another random variable with uniform distribution: Suppose p(t) = P[τi > t]
is the survival probability, the inverse CDF method suggests that if we take a
uniformly distributed rv U ∼ Unif [0, 1], then τ = p−1(U) has 1 − p(t) as its
CDF. The idea of the copula model is that instead of working with rv’s τi with
individual distributions and a rather special correlation structure, it would be
far simpler to work with transformed rv’s Ui, for which the correlation structure
may be much easier to specify. The copula model thus changes the problem of
imposing a correlation structure for τ1, τ2, . . . , τm into a correlation structure for
U1, U2, . . . , Um. Namely, we call

C(u1, u2, . . . , um) = P(U1 ≤ u1, . . . , Um ≤ um),

a copula function for the transformed rv’s U1, U2, . . . , Um. A particular copula
model specifies the form of the copula function C. Consider two rv’s, for examples,

1. Independence: C(u, v) = uv;

2. Perfect correlation: C(u, v) = min(u, v);

3. Gaussian: C(u, v) = P (N(X) ≤ u,N(Y ) ≤ v) where X, Y are standard
joint normal random variables with correlation coefficient ρ, and N(x) is the
cumulative normal distribution function.

Gaussian copula model is one of the most popular copula models in which a pair
of joint Gaussian rv’s with correlation coefficient ρ is simulated (which is easy to
do), and they are turned to a pair of uniform distributed U, V , and then further
turned to a pair τ1, τ2. The problem, however, is that the correlation between X
and Y is not the same as the correlation between τ1 and τ2.
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