
Chapter 4

Risk-Neutral Pricing of Derivatives
in the (B, S) Economy

4.1 (B,S) Economy

We have two tradable assets in the (B,S) economy: (1) a bond (B) with a guaranteed
(risk-less) growth with annualized rate r, and a stock (S) with uncertain (risky) growth,
and their dynamics in the risk-neutral world are described as follows.

• Bond:

model: dB = rB dt

solution: B(t) = B(0)ert

• Stock:

model:
dS

S
= r dt+ σ dW̃

solution: S(t) = S(0)e(r−
1
2
σ2)+σW̃ (t)

A derivative, or contingent claim on S with payoff VT = Λ(S) at T is a contract
where at the expiration T one party (seller of the contract) pays the other party (buyer
of the contract) an amount VT which is determined from S(T ) (or S(t), 0 ≤ t ≤ T ) in a
predetermined formula Λ(S). The seller receives a compensation by charging the buyer
a premium at the onset of the contract. One major advantage of such contracts is that
these contracts can be bought and sold on the market after the signing any time before
the expiration.

The main question is: what is the no-arbitrage price (the premium that will not lead
to any arbitrage opportunities for investors) of this contingent claim, at time t < T? This
is obviously the question that every market participant will be asking during the life of
this derivative product.
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We anticipate that the price at t should be determined based on all the information
leading to time t, hopefully just the information at time t. In another word, the price
should not depend on information not yet revealed to the market.

4.2 No-arbitrage Price

The idea to determine this no-arbitrage price is the following. We try to construct a
replicating portfolio consisting the bond and the stock, that will be ”equivalent” to the
derivative payoff at T , or that it does the same job as the derivative. If we can find such
a portfolio, then the price of the derivative should be exactly the same as the value of the
portfolio, otherwise there will be arbitrage opportunities. While the value of the portfolio
can be determined because the prices of the stock and the bond are readily observed at
any time of valuation. But the looming question is how many shares of the stock, and
how many units of the bond we shall include in the portfolio to do that ”replicating” job.

In a (B,S) economy, any portfolio consisting of these two assets can be expressed as

Πt = ∆t · S(t) + βt ·B(t)

where ∆t is the number of the shares of the stock at time t, and βt is the number of units
of the bond at time t. We can denote a portfolio just by (∆t, βt).

For a portfolio that replicates the derivative with payoff VT , we must have

1. ΠT = VT at T , in every possible scenario,

2. the portfolio is self-financing.

Here self-financing means that there will be no fund taken out, and no fund injected
during the trading period 0 < t < T . In mathematical terms, it amounts to the condition

S(t) d∆t +B(t) dβt = 0

Therefore the change of portfolio value will be

dΠt = ∆t dS(t) + βt dB(t)

If a portfolio is self-financing, we can express the value as

Πt = Π0 +

∫ t

0

βu dB(u) +

∫ t

0

∆u dS(u)

We shall use the models for B(t) and S(t), with the help of Itô calculus, to derive the
differential of the discounted portfolio value Π̄t = e−rtΠt,

dΠ̄t = −re−rt Πt dt+ e−rt (βt dB(t) + ∆t dS(t))

= −re−rt Πt dt+ e−rt [r (Πt −∆tS(t)) dt+ ∆t dS(t)]

= e−rt∆t (−rS(t) dt+ dS(t))

= e−rtσS(t) dW̃
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This shows that Π̄t is a martingale under the risk-neutral probability measure, for any
self-financing portfolios. In particular, with a martingale we can express

Π̄t = Ẽt

[
Π̄T

]
Let us first pretend that it is indeed possible to replicate the derivative payoff, that is, to
have a self-financing portfolio Πt such that

ΠT = VT = Λ(S(T ))

then we have
Π̄t = Ẽt

[
e−rTΛ(S(T ))

]
If we are successful in creating this replicating portfolio, the value of the portfolio should
be the same as the price of the derivative. Now that we have the no-arbitrage price

Vt = Πt = e−r(T−t)Ẽt [Λ(S(T ))]

once we have the conditional distribution of S(T ), given S(t), then it’s just a matter of
calculating the expectation. This is theoretically straightforward, but we can rarely get
a closed-form solution. There is, however, another approach to solve the same problem:
the partial differential equation approach. First we note that

V̄t = Ẽt

[
V̄T |S(t) = S

]
= ū(t, S) = e−rtu(t, S)

is a function of t and S. We can use Itô’s formula to calculate

dū = −re−rtu dt+ e−rt du

= e−rt
[(
ut + rSuS +

1

2
σ2S2 uSS − ru

)
dt+ σSuS dW̃

]
If the term in the bracket

ut + rSuS +
1

2
σ2S2 uSS − ru = 0

then ū is a martingale!
ū(t, S(t)) = Ẽt

[
Λ(S(T ))e−rT

]
This says that if u satisfies this Black-Scholes-Merton partial differential equation, then
ū is just the conditional expectation we have been trying to compute. So the problem
is turned to solving the PDE problem for u(t, S) illustrated in the following diagram.

- t

6S

T

(t, S)

Lu = 0

•
� u(T, S) = Λ(S)

�

marching backward in time

-current price
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Example 1 The Black-Scholes formula for call and put options can be viewed as solution
to the following PDE problem:

ut + rSuS +
1

2
σ2S2 uSS = ru

with terminal condition
u(T, S) = max(S −K, 0)

for call options or
u(T, S) = max(K − S, 0)

for put options.

4.3 Justification of the no-arbitrage price

Now is the final piece for the puzzle: how do we make sure that ΠT = VT for all scenarios?
We can just make sure that they start the same value, and all the increments in time also
match in all scenarios.

1. Starting at the same value:
V0 = Π0

2. Matching increments:
d
[
V̄ (t, S(t))

]
= dΠ̄t

The change of V̄ is

d
[
e−rtV (t, S(t))

]
= e−rtσS

∂V

∂S
dW̃

and from our earlier calculation,

dΠ̄t = ∆tσS̄(t) dW̃ = e−rtσS∆t dW̃

In order to have dΠ̄t = dV̄ , we can take

∆t =
∂V

∂S

Now we have a complete argument to justify this no-arbitrage price:

1. At time 0, we compute V0 = Ẽ
[
e−rTVT (S(T ))

]
from the expectation or by solving

the PDE problem;

2. Invest Π0 = V0 in a portfolio that consists of ∆0 shares of S, and the rest in bonds;

3. At any time t > 0, rebalance the portfolio according to

∆t =
∂V

∂S
|t, βt =

Πt −∆tS(t)

B(t)

4. At T , ΠT = Λ(S(T )), the portfolio will replicate the derivative payoff.

Claim: Π0 is the no-arbitrage price of the derivative as it is the cost to replicate it.
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4.4 Hedging of a derivative

There is yet another approach to derive the same no-arbitrage price. Instead of construct-
ing a replicating portfolio, we consider the following situation: suppose you are the seller
of the derivative product, how should you prepare for the outcomes? Or in a trading lan-
guage, how should you hedge this short position? If it’s a call option, your intuition tells
you that you should buy some stock, but exactly how many shares? For this question, let
us consider another portfolio with total value Pt;

Pt = Vt −∆t · S(t)

If you compute the change in time,

dPt = dVt −∆t dS

=

(
ut + rSuS +

1

2
σ2S2 uSS

)
dt+ σSuS dW̃ −∆t

(
rS dt+ σS dW̃

)
=

(
ut + rS(uS −∆t) +

1

2
σ2S2 uSS

)
dt+ σS(uS −∆t) dW̃

and we hope that the risk can be eliminated. This can be achieved by

∆t =
∂V

∂S
= uS

But then this portfolio is risk-less, it must make a risk-less return (with rate r). So we
must have

dPt = rPt dt

or

ut + rS(uS −∆t) +
1

2
σ2S2 uSS = r(u−∆tS) = ru− rSuS

which leads to the same Black-Scholes-Merton PDE for u(t, S) as above.
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