
Chapter 2

Brownian Motion (continued)

2.4 Using Brownian Motion to Model Stock Prices

Now we are ready to build a continuous time stock price model that is based on Brownian
motion, as the limiting case of the stock price in the binomial model as the number of
nodes goes to infinity. First we choose a time horizon T > 0, and divide it into N equal
subintervals, and we denote t = n∆t so

Sn = S0u
Mn ≈ S(t) = S(n∆t), 0 ≤ n ≤ N

so we can connect the price in the binomial model to the price in the continuous time
model.

First of all, we rather prefer to use symmetric random walk as shown in our limiting
procedure for Brownian motion. It turns out that we can modify the binomial tree to
achieve this:
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Here we take u to be eσ∆t and multiply a factor eµ∆t to compensate the change the
probability from p̃ to 1/2 to lead to symmetric random walk. The equivalence means that
the first two moments are matched, thus two equations are provided to solve for µ and
σ. The factor

√
∆t involved is now obvious from the construction of the scaled random

walk. The stock price from this binomial model can be summarized as

Sn = S0e
µn∆t+σ

√
∆tMn = S0e

µt+σ
√
t/nMn

1



where Mn is now a symmetric random walk. We will let n → ∞ and ∆t → 0 such that
n∆t = t, then as n→∞

µt+ σ
√
t/nMn = µt+ σ

1√
n′
Mbn′tc =⇒ µt+ σW (t)

here n′ = n/t → ∞ as n → ∞. Since we expect Sn → S(n∆t) = S(t), we now have a
continuous time stock price model

S(t) = S(0)eµt+σW (t)

and it is driven by the standard Brownian motion W (t). The stock price in this model
follows a geometric Brownian motion, since

logS(t) = log S(0) + µt+ σW (t)

is a Brownian motion with a drift term µt, and µ gives the slope that represents the trend.
In the world of positive interest rate, we are interested in the discounted stock price

S̃(t) = e−rtS(t).

Using the previous exercise we can see that it is a martingale if

µ− r = −1

2
σ2

or
S(t) = S(0)e(r−

1
2
σ2)t+σW (t)

Notice that the only parameters matter here are the risk-free interest rate r and the
volatility σ.

In general, we can categorize this model as one special case of the models

S(t) = S(0)eX(t)

and we describe X(t) in its differential

dX(t) = µ dt+ σ dW (t)

where we say that the infinitesimal increment

dW (t) = W (t+ dt)−W (t) ∼ N(0, dt).

This will lead us to an important type of processes called Itô’s process:

dX(t) = µ(X, t) dt+ σ(X, t) dW (t)
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Chapter 3

Continuous-time Stochastic Calculus

Suppose X(t) is a continuous-time process as just described, with uncertainties coming
from a Brownian motion, and we have another process defined by

Y (t) = f(X(t), t)

where f(x, t) is a differentiable function of x and t. How do we describe Y (t)? As X(t)
is described by these increments, we are naturally interested in dY (t), which leads to
a differential equation description of Y , and in this case we are dealing with stochastic
differential equations (SDE). To study differential equations, we must be able to define
differentials and here we need a formula for dY in terms of dX. The answer is the famous
Itô’s formula

dY (t) =
∂f

∂t
dt+

∂f

∂x
dX +

1

2

∂2f

∂x2
(dX)2

=

(
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

)
dt+ σ

∂f

∂x
dW

You may wonder why we added the second-order term in the Taylor expansion. The
reason is that we cannot ignore (dW )2 as

E[(dW )2] = dt,

so we need to include terms like (dX)2 in the expansion. Suppose we move from t to
t + ∆t, denote ∆W = W (t + ∆t) −W (t), ∆X = X(t + ∆t) − X(t), then we can use
Taylor’s expansion to obtain

∆Y = Y (t+ ∆t)− Y (t)

= f(X(t+ ∆t), t+ ∆t)− f(X(t), t)

≈ ft ·∆t+ fx ·∆X +
1

2
fxx · (∆X)2

≈ ft ·∆t+ fx · (µ∆t+ σ∆W ) +
1

2
fxx · (µ∆t+ σ∆W )2
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For the last term, we have

(µ∆t+ σ∆W )2 = µ2(∆t)2 + 2µσ ·∆t ·∆W + σ2(∆W )2

and we can estimate these terms one by one:

• µ2(∆t)2 is a higher order term (compared to ∆t), so it can be ignored.

• The term ∆t ·∆W is random, its expectation is 0 and the variance is (∆t)3, or the
standard deviation is (∆t)3/2, so it should also be ignored.

• Finally we have the term proportional to (∆W )2. Since ∆W ∼ N(0,∆t), the
expectation of (∆W )2 is ∆t and the variance is 2(∆t)2. So we can just replace
(∆W )2 by ∆t in the expansion.

Based on the above argument, we should just retain only one term from the above square
term, that is we can write

(µ∆t+ σ∆W )2 ≈ σ2∆t

in the Taylor expansion. Therefore

∆Y ≈
(
ft + µfx +

1

2
σ2fxx

)
∆t+ σfx∆W

By taking ∆t→ 0, we have the Itô’s formula.
Corresponding to stochastic differential equation for X, there is an integral version:

X(t) = x0 +

∫ t

0

µ(s) ds+

∫ t

0

σ(s) dW (s)

The last term requires a new definition as it is the limit in the following form:

I(t) =

∫ t

0

σ(s)dW (s) = lim
n→∞

n∑
i=1

σ(ti−1) (W (ti)−W (ti−1))

where 0 = t0 < t1 < t2 < · · · < tn = t, provided

E
[∫ T

0

X2 dt

]
<∞

and σ(t) is revealed by the time t. This is called the Itô’s integral and the following
properties are often used in financial calculus:

E [I(t)] = 0

Es [I(t)] = I(s)

Var [I(t)] =

∫ t

0

E
[
X2(s)

]
ds
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Example 1 Let f(x, t) = log x, and X(t) follows dX = aX dt+ bX dW . Find dY where
Y = f(X, t).

We calculate ft = 0, fx = 1/x, fxx = −1/x2, using Itô’s formula,

dY =

(
aX

1

X
− (bX)2 1

2

1

X2

)
+ bX

1

X
dW

=

(
a− 1

2
b2

)
dt+ b dW

If a and b are constant, we are tempted to conclude

Y (t) =

(
a− 1

2
b2

)
t+ bW (t)

which turns out to be correct. The real application of this result is that we have just
solved the sde for X:

X(t) = eY (t) = X(0)e(a−
1
2
b2)t+b dW (t)
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