Homework Assignment No. 8, due Monday, 4/10 at 5 pm

1. Use the Lagrange function in Eq.(8.13) from the lecture notes to show that the minimum is achieved at

$$\lambda_1 = \frac{C - \mu B}{AC - B^2}, \quad \lambda_2 = \frac{\mu A - B}{AC - B^2},$$

and derive the minimum-variance portfolio weight vector given in Eq.(8.14). Here A, B and C are defined on page 4 of week 10 notes.

2. Let a > 0 and $b \neq 0$. Show that the utility functions u(x) = ax + b and $u(x) = ax - \frac{b}{2}x^2$, where $x < \frac{a}{b}$, obey

$$\mathbb{E}\left[u(X)\right] = u\left(\mathbb{E}[X]\right) + \frac{1}{2}u''\left(\mathbb{E}[X]\right)\operatorname{Var}(X).$$

3. Assume a risk-free rate of 1.5%. Answer the questions below using the information in the following table:

Table 1: default

Portfolio	А	В	С	D	Е	F
Expected Return	3.2%	8.1%	9.8%	5.1%	10.7%	4.8%
Standard Deviation	2.7%	9.9%	13.7%	6.2%	17%	6.1%

- (a) Among the portfolios in the table, which one is closest to the market portfolio? Justify your answer.
- (b) Plot the capital market line (CML) based on your answer in part (a).
- (c) For portfolio C, what is the portfolio risk premium per unit of portfolio risk?
- (d) Suppose we are willing to make an investment only with $\sigma = 6.2\%$. Is a return of 6.5% a realistic expectation for us?