Homework Assignment No. 4, due Monday, 2/13 at 5 pm

1. Let the stock price process be a geometric Brownian motion

\[\frac{dS}{S} = r dt + \sigma d\tilde{W}(t), \quad S(0) = S_0 \]

Derive the explicit analytical expression for the risk-neutral probability of the following events:

(a) \(\{K_1 < S(T) < K_2\} \)

(b) \(\{S(T_2) > S(T_1) > S(t)\}, \quad \text{with } T_2 > T_1 > t > 0. \)

2. Assume the standard Black-Scholes model for a stock price as in Problem 1, A European call spread has payoff

\[\Lambda(S(T)) = \begin{cases}
0 & \text{if } S(T) \leq K \\
S(T) - K & \text{if } K < S(T) < K + D \\
D & \text{if } S(T) \geq K + D
\end{cases} \]

where \(K > 0 \) and \(D > 0 \) are given constants.

(a) Derive the formula for the option value \(V(t, S) \) and delta \(\Delta(t, S) \) at time \(t \), in terms of the spot stock price \(S(t) = S \), and time to maturity \(T - t \).

(b) Find the limits of \(V(t, S) \) as \(D \to 0 \) and \(D \to \infty \), and give a financial interpretation for your answers.